

Course outline

Semester 2 2016

Never Stand Still

Engineering

Mechanical and Manufacturing Engineering

MECH4900 MECHANICS OF FRACTURE AND FATIGUE

Contents

1.	Staff contact details	. 2
	Contact details and consultation times for additional lecturers/demonstrators/lab staff	. 2
2.	Course details	. 2
	Credit Points	. 2
	Contact hours	. 2
	Summary of the course	. 3
	Aims of the course	. 3
	Student learning outcomes	. 3
3.	Teaching strategies	. 3
4.	Course schedule	. 4
5.	Assessment	. 5
	Assessment overview	. 5
	Assignments	. 6
	Presentation	. 6
	Submission	. 6
	Examinations	. 6
	Calculators	. 6
	Special consideration and supplementary assessment	. 7
6.	Expected resources for students	. 7
7.	Course evaluation and development	. 7
8.	Academic honesty and plagiarism	. 8
9.	Administrative matters	. 9
Аp	pendix A: Engineers Australia (EA) Stage 1 Competencies for Professional Engineers	10

1. Staff contact details

Contact details and consultation times for additional lecturers/demonstrators/lab staff

Dr Kana Kanapathipillai Room J17/408J School of Mechanical and Manufacturing Engineering Tel (02) 9385 4251 Fax (02) 9663 1222 Email s.kanapathipillai@unsw.edu.au

Consultation concerning this course is available during the problem solving guidance sessions. You may make appointment for consultation by email.

2. Course details

Credit Points

This is a 6 unit-of-credit (UoC) course, and involves 3 hours per week (h/w) of face-to-face contact. The UNSW website states "The normal workload expectations of a student are approximately 25 hours per semester for each UoC, including class contact hours, other learning activities, preparation and time spent on all assessable work. Thus, for a full-time enrolled student, the normal workload, averaged across the 16 weeks of teaching, study and examination periods, is about 37.5 hours per week."

This means that you should aim to spend about 9 h/w on this course. The additional time should be spent in making sure that you understand the lecture material, completing the set assignments, further reading, and revising for any examinations.

There is no parallel teaching in this course.

Contact hours

	Day	Time	Location	Period
Lectures	Wednesday	2 pm – 4 pm	Colombo Theatre B	Week 1 -12
Demonstrations	Wednesday	4 pm – 5 pm or 5 pm – 6 pm	CEG06/102	Week 2 - 13
	Wednesday	2 pm – 5 pm	Lab J18/116	Week 8 or 9

Summary of the course

This course is an advanced course in the field of mechanics of solids. The course introduces the students to the terminology, principles, methods and practice used to safeguard structures against fracture and fatigue failures. In particular, the course teaches students to perform "damage tolerance analysis" of structures that are pertinent in design of advanced structures such as aerospace, naval, automobile structural components

Aims of the course

Fracture is a problem that society has faced to from beginning. The problem is actually worse today than previous centuries because more can go wrong in our complex technological society. It is imperative for graduates in a number of engineering disciplines including mechanical engineering to be familiar with the concept of fracture and fatigue. In this course, the students learn about the fundamental of mechanics of fracture and fatigue and the concept of damage tolerance analysis that is used in design of industrial components to avoid fracture and fatigue failures.

Student learning outcomes

This course is designed to address the below learning outcomes and the corresponding Engineers Australia Stage 1 Competency Standards for Professional Engineers as shown. The full list of Stage 1 Competency Standards may be found in Appendix A.

After successfully completing this course, you should be able to:

Learning Outcome		EA Stage 1 Competencies
1.	Studying various modes of fracture	PE 1.1, 1.2, 1.3, 2.1, 2.3
2.	Evaluation of fracture toughness	PE 1.1,1.2,1.5, 2.1,2.3,2.4
3.	Understanding of crack growth and fatigue	PE1.1, 1.2, 1.4
4.	Analysis of damage tolerance	PE1.1,1.3, 2.1, 2.2, 2.4

3. Teaching strategies

- Presentation of the material in weekly lectures so that the students develop understanding of the underlying concepts of the various topics covered in the course.
- Provision of weekly supervised problem solving guidance sessions where students can obtain assistance and develop their skill in solving technical problems.
- Provision of laboratory classes where students work in teams to perform physical experiments, analyse data and produce pertinent reports about which students will receive feedbacks.

4. Course schedule

The following table shows the time table of lecture topics and problem solving guidance sessions times.

		Wednesday 2 – 4 pm Colombo Theatre B	Wednesday 4 – 5pm or 5 – 6pm CEG06/102	Due
Date	Week	Lecture Topic	Problem solving guidance	Task
27 July	1	Introduction to damage tolerance analysis and fracture mechanics		
03 August	2	Plastic collapse	✓	
10 August	3	Modes of fracture, crack-tip stresses and displacements, stress intensity factor.	✓	
17 August	4	Fracture criterion	✓	
24 August	5	Various methods of determining stress intensity factor Fracture toughness	✓	Quiz
31 August	6	Crack-tip plasticity & Description of Major Assignment	✓	
07 Sept	7	Fracture toughness	✓	
14 Sept	8	Laboratory – Fracture toughness testing		
21 Sept	9	Residual Strength Diagram Description of FEA Assignment	✓	Lab
		Semester break		
05 Oct	10	Holiday	✓	Lab report
12 Oct	11	Crack growth and fatigue	✓	FEA Assignment
19 Oct	12	Crack growth diagram	✓	Major Assignment
26 Oct	13	Damage tolerance analysis		

The timing of the above schedule is indicative and minor adjustments may occur.

5. Assessment

This course will be assessed by a laboratory test/report, an in-semester quiz, and assignments as shown in the assignment overview below and a final formal examination.

Details of each assessment component, the marks assigned to it, and the dates of submission:

Assessment overview

Undergraduate students:

	Mark	Week	Learning outcomes assessed	Marks Returned
In-semester Quiz (1 hour)	20%	5	1	2 weeks after Quiz
Fracture Toughness Laboratory Report	15%	10	1, 2	2 weeks after submission
FEA Assignment	5%	11	1, 2, 3, 4	1 week after submission
Final Formal Examination (2 hours)	60%	ТВС	1, 2, 3, 4	Upon release of final results
Total	100%			

Postgraduate students:

	Mark	Week	Learning outcomes assessed	Marks Returned
In-semester Quiz (1 hour)	20%	5	1	2 weeks after Quiz
Fracture Toughness Laboratory Report	15%	10	1, 2	2 weeks after submission
FEA Assignment	5%	11	1, 2, 3, 4	1 week after submission
Major Assignment	15%	12	1, 2, 3, 4	2 weeks after submission
Final Formal Examination (2 hours)	45%	ТВС	1, 2, 3, 4	Upon release of final results
Total	100%			

The assessment tasks will be available on Moodle. The above-mentioned dates are indicative depending on progress in lectures. If so, the new dates for the tests and lab will be announced during the lectures. In order to pass the course, you must achieve a total mark of 50% or higher.

The assignments and the lab report will be submitted electronically through a drop box in Moodle by 11 pm, Friday in the weeks indicated in the course schedule

Assignments

Presentation

All submissions should have a standard School cover sheet which is available from this course's Moodle page.

All submissions are expected to be neat and clearly set out. Your results are the pinnacle of all your hard work. Presenting them clearly gives the marker the best chance of understanding your method; even if the numerical results are incorrect.

Submission

Late submissions will be penalised 5 marks per calendar day (including weekends). An extension may only be granted in exceptional circumstances. Where an assessment task is worth less than 20% of the total course mark and you have a compelling reason for being unable to submit your work on time, you must seek approval for an extension from the course convenor *before the due date*. Special consideration for assessment tasks of 20% or greater must be processed through <u>student.unsw.edu.au/special-consideration</u>.

It is always worth submitting late assessment tasks when possible. Completion of the work, even late, may be taken into account in cases of special consideration.

Examinations

There will be one two-hour examination during the formal university examination period at the end of the semester, based on all material covered during the whole semester.

Provisional Examination timetables are generally published on myUNSW in May for Semester 1 and September for Semester 2.

For further information on exams, please see the **Exams** section on the intranet.

Calculators

You will need to provide your own calculator, of a make and model approved by UNSW, for the examinations. The list of approved calculators is shown at student.unsw.edu.au/exam-approved-calculators-and-computers

It is your responsibility to ensure that your calculator is of an approved make and model, and to obtain an "Approved" sticker for it from the School Office or the Engineering Student Centre prior to the examination. Calculators not bearing an "Approved" sticker will not be allowed into the examination room.

Special consideration and supplementary assessment

For details of applying for special consideration and conditions for the award of supplementary assessment, see the School <u>intranet</u>, and the information on UNSW's Special Consideration page.

6. Expected resources for students

Textbook & notes details

- 1. Zarrabi K, "Mechanics of Fracture and Fatigue", March 2000 (available on Moodle).
- 2. Anderson T L, "Fracture Mechanics: Fundamentals and Applications", 3rd Edition, CRC Press.

List of required and suggested additional readings

- 1. Ewalds H L E and Wanhill R J H, "Fracture Mechanics", Edward Arnold, 1989.
- 2. Broek D, "Elementary Engineering Fracture Mechanics", Nijoff, 1985.
- 3. Murakami Y, "Stress Intensity Factors Handbook", Vols 1&2, Pergamon Press, 1987.
- 4. Aliabadi M H, "Database of Stress Intensity Factors", UK (1995 or 1996).
- 5. Sanford R J, "Principles of Fracture Mechanics", Pearson Education, USA, 2003.
- 6. http://www.dsto.defence.gov.au/publications/1880/DSTO-GD-0103.pdf

Copies of the above reference books are available in the Main Library. One starting point for assistance is_UNSW Library website:

http://info.library.unsw.edu.au/web/services/services.html

7. Course evaluation and development

Feedback on the course is gathered periodically using various means, including the Course and Teaching Evaluation and Improvement (CATEI) process, informal discussion in the final class for the course, and the School's Student/Staff meetings. Your feedback is taken seriously, and continual improvements are made to the course based, in part, on such feedback.

In this course, recent improvements resulting from student feedback include more demonstration examples, active interactive teaching along with practical examples.

8. Academic honesty and plagiarism

UNSW has an ongoing commitment to fostering a culture of learning informed by academic integrity. All UNSW students have a responsibility to adhere to this principle of academic integrity. Plagiarism undermines academic integrity and is not tolerated at UNSW. *Plagiarism at UNSW is defined as using the words or ideas of others and passing them off as your own.*

Plagiarism is a type of intellectual theft. It can take many forms, from deliberate cheating to accidentally copying from a source without acknowledgement. UNSW has produced a website with a wealth of resources to support students to understand and avoid plagiarism: student.unsw.edu.au/plagiarism The Learning Centre assists students with understanding academic integrity and how not to plagiarise. They also hold workshops and can help students one-on-one.

You are also reminded that careful time management is an important part of study and one of the identified causes of plagiarism is poor time management. Students should allow sufficient time for research, drafting and the proper referencing of sources in preparing all assessment tasks.

If plagiarism is found in your work when you are in first year, your lecturer will offer you assistance to improve your academic skills. They may ask you to look at some online resources, attend the Learning Centre, or sometimes resubmit your work with the problem fixed. However more serious instances in first year, such as stealing another student's work or paying someone to do your work, may be investigated under the Student Misconduct Procedures.

Repeated plagiarism (even in first year), plagiarism after first year, or serious instances, may also be investigated under the Student Misconduct Procedures. The penalties under the procedures can include a reduction in marks, failing a course or for the most serious matters (like plagiarism in an honours thesis) even suspension from the university. The Student Misconduct Procedures are available here:

www.gs.unsw.edu.au/policy/documents/studentmisconductprocedures.pdf

Further information on School policy and procedures in the event of plagiarism is available on the <u>intranet</u>.

9. Administrative matters

All students are expected to read and be familiar with School guidelines and polices, available on the intranet. In particular, students should be familiar with the following:

- Attendance, Participation and Class Etiquette
- <u>UNSW Email Address</u>
- Computing Facilities
- <u>Assessment Matters</u> (including guidelines for assignments, exams and special consideration)
- Academic Honesty and Plagiarism
- Student Equity and Disabilities Unit
- Health and Safety
- Student Support Services

Dr Kana Kanapathipillai 20/07/2016

Appendix A: Engineers Australia (EA) Stage I Competencies for Professional Engineers

	Program Intended Learning Outcomes
	PE1.1 Comprehensive, theory-based understanding of underpinning fundamentals
PE1: Knowledge and Skill Base	PE1.2 Conceptual understanding of underpinning maths, analysis, statistics, computing
owle ≡ B	PE1.3 In-depth understanding of specialist bodies of knowledge
E1: Knowledg and Skill Base	PE1.4 Discernment of knowledge development and research directions
PE1 and	PE1.5 Knowledge of engineering design practice
	PE1.6 Understanding of scope, principles, norms, accountabilities of sustainable engineering practice
ing ility	PE2.1 Application of established engineering methods to complex problem solving
neer Ab	PE2.2 Fluent application of engineering techniques, tools and resources
PE2: Engineering Application Ability	PE2.3 Application of systematic engineering synthesis and design processes
PE2 App	PE2.4 Application of systematic approaches to the conduct and management of engineering projects
_	PE3.1 Ethical conduct and professional accountability
PE3: Professional and Personal Attributes	PE3.2 Effective oral and written communication (professional and lay domains)
Profession of Person Attributes	PE3.3 Creative, innovative and pro-active demeanour
3: Pr ind F Atti	PE3.4 Professional use and management of information
PE	PE3.5 Orderly management of self, and professional conduct
	PE3.6 Effective team membership and team leadership