Course outline
Semester 2 2016

MTRN3020
MODELLING AND CONTROL OF MECHATRONIC SYSTEMS
Contents

1. Staff contact details
 Contact details and consultation times for course convenor

2. Course details
 Credit Points
 Contact hours
 Summary of the course
 Aims of the course
 Student learning outcomes

3. Teaching strategies

4. Course schedule

5. Assessment
 Assessment overview
 Assignments
 Presentation
 Submission
 Examinations
 Calculators
 Special consideration and supplementary assessment

6. Expected resources for students

7. Course evaluation and development

8. Academic honesty and plagiarism

9. Administrative matters

Appendix A: Engineers Australia (EA) Stage 1 Competencies for Professional Engineers
1. Staff contact details

Contact details and consultation times for course convenor

Name: Associate Professor Jay Katupitiya
Office: ME510E
Tel: (02) 9385 4096
Email: J.Katupitiya@unsw.edu.au

Consultation Times: See Moodle after the course starts.

2. Course details

Credit Points

This is a 6 unit-of-credit (UoC) course, and involves three hours per week (h/w) of face-to-face contact.

The UNSW website states “The normal workload expectations of a student are approximately 25 hours per semester for each UoC, including class contact hours, other learning activities, preparation and time spent on all assessable work. Thus, for a full-time enrolled student, the normal workload, averaged across the 16 weeks of teaching, study and examination periods, is about 37.5 hours per week.”

This means that you should aim to spend about 9 h/w on this course. The additional time should be spent in making sure that you understand the lecture material, completing the set assignments, further reading, and revising for any examinations.

Contact hours

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>Monday 10 am – 12 noon</td>
<td>Colombo Theatre C</td>
</tr>
<tr>
<td>Demonstrations</td>
<td>Monday 9 am - 10 am</td>
<td>Ainsworth Building 203</td>
</tr>
<tr>
<td>Laboratories†</td>
<td>Monday 1 pm – 4 pm</td>
<td>MTRN212 (Willis Annex)</td>
</tr>
<tr>
<td>† These will be held in weeks 7, 9 and 11 only</td>
<td>Tuesday 9 am – 12 noon</td>
<td>MTRN212 (Willis Annex)</td>
</tr>
<tr>
<td></td>
<td>Wednesday 2 pm – 5 pm</td>
<td>MTRN212 (Willis Annex)</td>
</tr>
<tr>
<td></td>
<td>Thursday 3 pm – 6 pm</td>
<td>MTRN212 (Willis Annex)</td>
</tr>
<tr>
<td></td>
<td>Friday 11 am – 2 pm</td>
<td>MTRN212 (Willis Annex)</td>
</tr>
</tbody>
</table>
Summary of the course

This course focuses on the design of digital control systems and their implementation on linear time invariant systems.

Aims of the course

Description: This course will give you a thorough understanding of computer controlled systems. Its core content can be broadly categorized into mathematical and experimental means of modelling Mechatronic Systems, model validation, design of digital controllers using a variety of different methods and the implementation of controllers on real-life systems. The systems being modelled and controlled are largely motion control systems.

The course has laboratory experiments to model a monorail crane system and to design and implement digital control systems on speed and position control rigs.

The courses in the Mechatronics discipline are built up on four different areas. They are; mechanical design, computing, electronics and microprocessors, and control systems. The latter three areas are interrelated and this course forms a corner stone of the fundamental courses on which the Mechatronic Engineering course at UNSW is built up on. A thorough understanding of the control of dynamical mechanical systems to achieve desired motions is essential for the design and development of any sophisticated Mechatronic System. Using the fundamental classical control system knowledge gained in the third year, this course builds your knowledge on designing and implementing computer-controlled systems. Control systems provide a methodical way of carrying out the motion control that also needs programming and computing. As such the contributions from this course to the Mechatronic Engineering degree program are absolutely essential and vital.

Student learning outcomes

This course is designed to address the learning outcomes below and the corresponding Engineers Australia Stage 1 Competency Standards for Professional Engineers as shown. The full list of Stage 1 Competency Standards may be found in Appendix A.

After successfully completing this course, you should be able to:

<table>
<thead>
<tr>
<th>Learning Outcome</th>
<th>EA Stage 1 Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Develop an understanding of the purpose of control systems and their use.</td>
<td>PE1.1 Comprehensive, theory-based understanding of underpinning fundamentals</td>
</tr>
<tr>
<td>2. Be able to understand that a plant is given and a control system is to be designed to satisfy performance specifications.</td>
<td>PE1.1 Comprehensive, theory-based understanding of underpinning fundamentals</td>
</tr>
</tbody>
</table>
3. Teaching strategies

Teaching of this course is through lectures, demonstrations and laboratory sessions. All laboratory work is individual work and attendance is essential.

The provision of the learning environment in the laboratory is to facilitate you to develop confidence in managing laboratory tasks as projects. Demonstrators in the laboratories are there to provide you all the guidance and assistance is managing the laboratory tasks.

4. Course schedule

<table>
<thead>
<tr>
<th>Topic</th>
<th>Thursdays (1200-1400)</th>
<th>Location</th>
<th>Lecture Content</th>
<th>Demo/Lab</th>
<th>Suggested Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Control Systems</td>
<td>Week 2</td>
<td>Colombo C</td>
<td>Classical Control Systems, Terminology, Feedback versus Feed forward, Qualitative and Quantitative Analyses of Proportional, Integral and Derivative Controllers. Simulation of Classical Control Systems.</td>
<td>None</td>
<td>Moodle lecture notes</td>
</tr>
<tr>
<td>s-Domain to z-Domain</td>
<td>Week 3</td>
<td>Colombo C</td>
<td>z-transforms, Inversion Techniques, Pulse Transfer functions.</td>
<td>None</td>
<td>Moodle lecture notes</td>
</tr>
<tr>
<td>Course Outline: MTRN3020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Computer Controlled Systems	**Week 4**	**Colombo C**	Signal Types, Samplers, Analogue to Digital Controllers, Digital to Analogue Controllers, PWM Amplifiers, Encoders, Actuators, Mathematical Representation of these Elements.	None	Moodle lecture notes
Modelling of Mechatronic Systems	**Week 5**	**Colombo C**	Mathematical Modelling of a DC Servo Motor Driving a Positioning System, Experimental System Identification of a Linear Robot Axis. Conversion of Continuous Time Models to Discrete Time Models.	None	Moodle lecture notes
Design Methods for Discrete Time Controllers	**Week 6**	**Colombo C**	Root Locus Method, Direct Design Method	None	Moodle lecture notes
Design Methods for Discrete Time Controllers	**Week 7**	**Colombo C**	Indirect Design Method, State Space Method	None	Moodle lecture notes
Design Methods for Discrete Time Controllers	**Week 8**	**Colombo C**	Design of a Position Controller, Design of a Speed Controller, Real-Time Implementation of Controllers..	None	Moodle lecture notes
Design and Implementation of Controllers	**Week 9**	**Colombo C**	Design of a Position Controller, Design of a Speed Controller, Real-Time Implementation of Controllers.	None	Moodle lecture notes
Controllability and Observability	**Week 10**	**Colombo C**	Determining observability and controllability of a system	None	Moodle lecture notes
Estimators	**Week 11**	**Colombo C**	Predictive and current observer design	None	Moodle lecture notes
Revision	**Week 12**	**Colombo C**	Revision	None	Moodle lecture notes
5. Assessment

Assessment overview

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Length</th>
<th>Weight</th>
<th>Learning outcomes assessed</th>
<th>Assessment criteria</th>
<th>Due date and submission requirements</th>
<th>Marks returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monorail crane modelling</td>
<td>A full report as per submission</td>
<td>15%</td>
<td>1 and 2</td>
<td>Refer to laboratory specification for exact details</td>
<td>Submit electronically to Moodle submission site by midnight of Friday Week 9</td>
<td>Two weeks after submission</td>
</tr>
<tr>
<td>experiment</td>
<td>specification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed control experiment</td>
<td>A full report as per submission</td>
<td>15%</td>
<td>3 and 4</td>
<td>Refer to laboratory specification for exact details</td>
<td>Submit electronically to Moodle submission site by midnight of Friday Week 11</td>
<td>Two weeks after submission</td>
</tr>
<tr>
<td></td>
<td>specification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position control experiment</td>
<td>A full report as per submission</td>
<td>20%</td>
<td>3 and 4</td>
<td>Refer to laboratory specification for exact details</td>
<td>Submit electronically to Moodle submission site by midnight of Friday Week 13</td>
<td>Two weeks after submission</td>
</tr>
<tr>
<td></td>
<td>specification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final exam</td>
<td>2 hours</td>
<td>50%</td>
<td>1 - 4</td>
<td>All course content weeks 1-12</td>
<td>Exam period, date TBC</td>
<td>After release of results</td>
</tr>
</tbody>
</table>

† The laboratory experiment specifications will be available from week 2 onwards in Moodle.

Assignments

Presentation

During experimentations, each student will collect his/her own personalized data. It is essential that each student use his/her personalized data in his/her reports. Marks are awarded for neat, tidy and complete reports with complete content as specified in the laboratory instructions sheets. Your content will not be marked if the reports are not presented with the presentation quality specified in the laboratory instructions sheets.
Submission

Late submissions will be penalised 5 marks per calendar day (including weekends). An extension may only be granted in exceptional circumstances. Where an assessment task is worth less than 20% of the total course mark and you have a compelling reason for being unable to submit your work on time, you must seek approval for an extension from the course convenor before the due date. Special consideration for assessment tasks of 20% or greater must be processed through student.unsw.edu.au/special-consideration.

It is always worth submitting late assessment tasks when possible. Completion of the work, even late, may be taken into account in cases of special consideration.

Examinations

You must be available for all tests and examinations. Final examinations for each course are held during the University examination periods, which are June for Semester 1 and November for Semester 2.

 Provisional Examination timetables are generally published on myUNSW in May for Semester 1 and September for Semester 2

For further information on exams, please see the Exams section on the intranet.

Calculators

You will need to provide your own calculator, of a make and model approved by UNSW, for the examinations. The list of approved calculators is shown at student.unsw.edu.au/exam-approved-calculators-and-computers

It is your responsibility to ensure that your calculator is of an approved make and model, and to obtain an “Approved” sticker for it from the School Office or the Engineering Student Centre prior to the examination. Calculators not bearing an “Approved” sticker will not be allowed into the examination room.

Special consideration and supplementary assessment

For details of applying for special consideration and conditions for the award of supplementary assessment, see the School intranet, and the information on UNSW’s Special Consideration page.
6. Expected resources for students

Recommended Textbooks

Additional Readings:

Worked solutions to computer lab exercises will be made available in the Moodle page for MTRN3020.

Library:
http://info.library.unsw.edu.au/web/services/services.html

7. Course evaluation and development

Feedback on the course is gathered periodically using various means, including the Course and Teaching Evaluation and Improvement (CATEI) process, informal discussion in the final class for the course, and the School's Student/Staff meetings. Your feedback is taken seriously, and continual improvements are made to the course based, in part, on such feedback.

In this course, recent improvements resulting from student feedback include lecturer’s feedback to those students who choose to submit their solutions to computer lab exercises before the worked solutions are released. No marks will be awarded for these submissions.

8. Academic honesty and plagiarism

UNSW has an ongoing commitment to fostering a culture of learning informed by academic integrity. All UNSW students have a responsibility to adhere to this principle of academic integrity. Plagiarism undermines academic integrity and is not tolerated at UNSW. Plagiarism at UNSW is defined as using the words or ideas of others and passing them off as your own.

Plagiarism is a type of intellectual theft. It can take many forms, from deliberate cheating to accidentally copying from a source without acknowledgement. UNSW has produced a website with a wealth of resources to support students to understand and avoid plagiarism: student.unsw.edu.au/plagiarism The Learning Centre assists students with understanding academic integrity and how not to plagiarise. They also hold workshops and can help students one-on-one.

You are also reminded that careful time management is an important part of study and one of the identified causes of plagiarism is poor time management. Students should allow
sufficient time for research, drafting and the proper referencing of sources in preparing all assessment tasks.

If plagiarism is found in your work when you are in first year, your lecturer will offer you assistance to improve your academic skills. They may ask you to look at some online resources, attend the Learning Centre, or sometimes resubmit your work with the problem fixed. However, more serious instances in first year, such as stealing another student’s work or paying someone to do your work, may be investigated under the Student Misconduct Procedures.

Repeated plagiarism (even in first year), plagiarism after first year, or serious instances, may also be investigated under the Student Misconduct Procedures. The penalties under the procedures can include a reduction in marks, failing a course or for the most serious matters (like plagiarism in an honours thesis) even suspension from the university. The Student Misconduct Procedures are available here: www.gs.unsw.edu.au/policy/documents/studentmisconductprocedures.pdf

Further information on School policy and procedures in the event of plagiarism is available on the intranet.

9. Administrative matters

All students are expected to read and be familiar with School guidelines and polices, available on the intranet. In particular, students should be familiar with the following:

- Attendance, Participation and Class Etiquette
- UNSW Email Address
- Computing Facilities
- Assessment Matters (including guidelines for assignments, exams and special consideration)
- Academic Honesty and Plagiarism
- Student Equity and Disabilities Unit
- Health and Safety
- Student Support Services

Jay Katupitiya
20 July 2016
Appendix A: Engineers Australia (EA) Stage 1 Competencies for Professional Engineers

<table>
<thead>
<tr>
<th>Program Intended Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE1: Knowledge and Skill Base</td>
</tr>
<tr>
<td>PE1.1 Comprehensive, theory-based understanding of underpinning fundamentals</td>
</tr>
<tr>
<td>PE1.2 Conceptual understanding of underpinning maths, analysis, statistics, computing</td>
</tr>
<tr>
<td>PE1.3 In-depth understanding of specialist bodies of knowledge</td>
</tr>
<tr>
<td>PE1.4 Discernment of knowledge development and research directions</td>
</tr>
<tr>
<td>PE1.5 Knowledge of engineering design practice</td>
</tr>
<tr>
<td>PE1.6 Understanding of scope, principles, norms, accountabilities of sustainable engineering practice</td>
</tr>
<tr>
<td>PE2: Engineering Application Ability</td>
</tr>
<tr>
<td>PE2.1 Application of established engineering methods to complex problem solving</td>
</tr>
<tr>
<td>PE2.2 Fluent application of engineering techniques, tools and resources</td>
</tr>
<tr>
<td>PE2.3 Application of systematic engineering synthesis and design processes</td>
</tr>
<tr>
<td>PE2.4 Application of systematic approaches to the conduct and management of engineering projects</td>
</tr>
<tr>
<td>PE3: Professional and Personal Attributes</td>
</tr>
<tr>
<td>PE3.1 Ethical conduct and professional accountability</td>
</tr>
<tr>
<td>PE3.2 Effective oral and written communication (professional and lay domains)</td>
</tr>
<tr>
<td>PE3.3 Creative, innovative and pro-active demeanour</td>
</tr>
<tr>
<td>PE3.4 Professional use and management of information</td>
</tr>
<tr>
<td>PE3.5 Orderly management of self, and professional conduct</td>
</tr>
<tr>
<td>PE3.6 Effective team membership and team leadership</td>
</tr>
</tbody>
</table>