

Course outline

Semester 2 2016

Never Stand Still

Engineering

Mechanical and Manufacturing Engineering

NAVL4410 SHIP STRUCTURES 2

Contents

1	Staff contact details	2
2	Course details	2
	Credit Points	2
	Contact hours	2
	Summary of the course	3
	Aims of the course	3
	Student learning outcomes	3
3	Teaching strategies	4
4	Course schedule	4
5	Assessment	5
	Assignments	6
	Presentation	6
	Submission	7
	Examinations	7
	Calculators	8
	Special consideration and supplementary assessment	8
6	Expected resources for students	8
7	Course evaluation and development	9
8	Academic honesty and plagiarism	10
9	Administrative matters	11
Α	ppendix A: Engineers Australia (EA) Stage 1 Competencies for Professional Engineers	12

1. Staff contact details

Contact details and consultation times for course convenor

Dr Mac Chowdhury Room Ainsworth208B Phone 9385 4119 Fax 9663 1222 Email m.chowdhury@unsw.edu.au

I am available for consultation by appointment, or can be reached by telephone or email.

Contact details and consultation times for additional lecturers/demonstrators/lab staff

N/A

2. Course details

Credit Points

This is a 6 unit-of-credit (UoC) course, and involves three hours per week (h/w) of face-to-face contact.

The UNSW website states "The normal workload expectations of a student are approximately 25 hours per semester for each UoC, including class contact hours, other learning activities, preparation and time spent on all assessable work. Thus, for a full-time enrolled student, the normal workload, averaged across the 16 weeks of teaching, study and examination periods, is about 37.5 hours per week."

This means that you should aim to spend about 9 h/w on this course. The additional time should be spent in making sure that you understand the lecture material, completing the set assignments, further reading, and revising for any examinations.

There is no parallel teaching in this course.

Contact hours

		Day	Time	Location
Module A	Lecture	Tuesday	1pm - 2pm	ASB 115
FE Analysis	Demonstration	Tuesday	2pm - 4pm	ME 204
Module B Structural Composites	Lecture and demonstration	Monday	2pm - 5pm	Pioneer Int. Theatre

Summary of the course

This course comprises two modules of equal credit:

Module A: Finite element methods and applications Introduces you to practical analysis of ship structures using finite element method and develops an awareness of the power and limitations of the method.

Module B: Composite materials and structural applications Introduces you to structural composite materials and their applications to ship structures.

Aims of the course

Module A: The main objective of Module A is to introduce you to practical analysis of ship structures using finite elements and to develop an awareness of the power and limitations of the method. This requires you to develop an appreciation of modelling, estimation of the resources required to complete an analysis, and assessment of the accuracy of the results. You will be expected to complete significant modelling applications using ANSYS finite-element software.

Module B: The main objective of Module B of this course is to introduce you to structural composite materials and their application to ship structures. The module begins with a brief description of the constituents of structural composites, their physical properties and the common fabrication technology. This is followed by developing the methodologies to analyse composite panels and sandwich constructions under static and fatigue loads.

Student learning outcomes

This course is designed to address the learning outcomes below and the corresponding Engineers Australia Stage 1 Competency Standards for Professional Engineers as shown. The full list of Stage 1 Competency Standards may be found in Appendix A.

After successfully completing this course, you should be able to:

Le	arning Outcome	EA Stage 1 Competencies
1.	Grasp the underlying mathematical background of Finite Element methods and learn and apply the various applications using commercial software	PE1.1-PE1.3, PE1.5, PE2.1-PE2.3, PE3.2
2.	Decide upon the most appropriate methods of implementation of FEA software to Static and Dynamic structural analysis and other disciplines	PE1.1-PE1.3, PE1.5,PE2.1-PE2.3, PE3.2
3.	Clear understanding of Properties of Structural composites, their advantages and limitations compared to conventional metallic materials	PE1.1-PE1.3, PE1.5, PE3.2, PE3.6
4.	Analyze the behavior of composite laminas and laminates under various types of loading and failure analysis	PE1.1-PE1.3, E1.5,PE2.1- PE2.3, PE3.2, PE3.6

3. Teaching strategies

Lectures in Module A are designed to give a summary of the fundamentals of finite elements and then emphasize hands-on applications of finite-element software for analysing the assignment problems.

Lectures in Module B are designed to give a clear understanding of the properties of structural composite materials, followed by analysis for stress, deformation and failure. A number of problems are solved in the class with your active participation.

4. Course schedule

MODUL	MODULE A: FINITE ELEMENT ANALYSIS					
Week	Lecture (1 Hour)	Demonstration (2 Hours)				
1	Introduction to FEA & ANSYS overview					
	One dimensional FEA					
2	Linear spring explanation	Control box cover for MECH3410				
_	Elementary calculation & procedures in FE	Creating a simple boat for NAVL4410				
	Stiffness matrix for truss element					
	Beam element, example, derivation	A simple truss				
3	Stiffness matrix	Stress in a cylinder				
	Beam end releases	Stress in a cylinder				
	Assembly, application of boundary	Bike frame				
4	conditions, solutions etc.	Subframe				
-	Setting up boundary conditions in ANSYS	Remote loads and name selection				
	Analysis types including Thermal	Modeling TV unit				
	2-D FEA					
	2D- element for stress analysis	Plate with a hole				
5	Triangular element for axisymmetric	Midsurface creation				
3	analysis	Result processing				
	Quadrilateral element for 2D-stress	Result processing				
	Isoparametric element					
	Brick Element	Pump assembly				
6	Solid Shell	Mesh control-crankshaft				
	Compare Solid vs. Shell element results	West control-crankshart				
	Interface with CAD	Pressure cap 2D-3D comparison				
7	Contact issues	Optimisation demonstration				
	Modal analysis	Optimisation demonstration				
		Effect of contact stiffness on				
		convergence				
8	Non-linear large deflection analysis	Bolt pre-tension				
	Material nonlinear	Spring nonlinear diagnostics				
		Fatigue analysis				
		Modeling Composites				

9	Linear buckling	Galloping modal analysis	
3	Linear buckling	Wing model analysis	
		Fishing Rod	
10	FSI	Large deflection	
		Linear buckling	
11		FSI	
12	Optimisation, Wrap up	Mesh refinement	

^{*} Mesh refinement, solution time, convergence issues to be managed in various demonstrations

MODUL	MODULE B: STRUCTURAL COMPOSITES				
Week	Lecture (1 Hour)				
1	Composites materials – classification and definitions				
2	Fibres, matrices and interface				
3	Geometrical aspects, volume fraction etc and fabrication technology				
4	Geometrical aspects, volume fraction etc and raphication technology				
5	Elastic properties of lamina				
6	Liastic properties or lamina				
7					
8	Laminate theory and analysis				
9					
10	Failure theories of composite laminates				
11	Sandwich construction				
12	Fatigue and fracture of composites				
13	Revision				

There is no separate demonstration time for this module. The demonstration when needed will be conducted during the lecture periods.

The schedules shown may be subject to change at short notice to suit exigencies.

5. Assessment

Module A

In addition to two initial brief calculations, students will undertake two assignments with increasing degree of difficulty and write a report on the results achieved. The analysis problem will be discussed in class but the approach to the analysis and validation of results will be an important part of the assignment. Where possible, you will be given a problem that has a unique feature, such as dimensions different from those of other students.

Assessment task	Mark	Weight	Learning outcomes assessed	Assessment criteria	Due date	Assessments returned
Assignment 1	20	10	1, 2	Frame analysis using 2D elements	Week 4	Week 5
Assignment 2	30	15	1, 2	FE Analysis and experimental validation	Week 8	Week 10
Assignment 3	20	10	1, 2	Advanced FE analysis, Fatigue life	Week 12	Week 13
Final exam	30	15	1, 2	Questions on theoretical aspects of FEA	TBC	
TOTAL	100	50%				

Module B

Following the lectures on a topic, you will be given assignments; some of these are individual, and some are for groups. The assignments are of increasing difficulty; some are hand calculations, and others will need finite-element software and/or Matlab.

Assessment task	Mark	Weight	Learning outcomes assessed	Assessment criteria	Due date	Assessments returned
Assignment 1	5	2.5%	3, 4	Mass/Volume fractions	Week 3	Week 4
Assignment 2	5	2.5%	3, 4	Analysis of Lamina	Week 5	Week 6
Assignment 3	10	5%	3, 4	Analysis of Laminates	Week 8	Week 10
Assignment 4	10	5%	3, 4	Performance analysis	Week 10	Week 11
Assignment 5	10	5%	3, 4	Failure analysis	Week 12	Week 13
Final exam	60	30%	3, 4	All content	TBC	
TOTAL	100	50%				

In order to pass the course, you must achieve an overall mark of at least 50%.

Assignments

Assignments will be handed out in hard copy in class, and will available on the Moodle website in case you miss the hand-out in class.

Presentation

All submissions should have a standard School cover sheet which is available from this course's Moodle page.

All submissions are expected to be neat and clearly set out. Your results are the pinnacle of all your hard work. Presenting them clearly gives the marker the best chance of understanding your method; even if the numerical results are incorrect.

Submission

Assignments are due on the scheduled day of the class in the week nominated above. Assignments should, preferably, be submitted direct to the lecturer or demonstrator in class. They may, alternatively, be lodged in the NAVL assignment submissions box opposite the School office by 1700 on the due date.

Late submissions will be penalised 5 marks per calendar day (including weekends). An extension may only be granted in exceptional circumstances. Where an assessment task is worth less than 20% of the total course mark and you have a compelling reason for being unable to submit your work on time, you must seek approval for an extension from the course convenor before the due date. Special consideration for assessment tasks of 20% or greater must be processed through https://student.unsw.edu.au/special-consideration.

It is always worth submitting late assessment tasks when possible. Completion of the work, even late, may be taken into account in cases of special consideration.

Criteria

The following criteria will be used to grade assignments:

For report-style assignments the following criteria will be used:

- Identification of key facts and the integration of those facts in a logical development.
- Clarity of communication—this includes development of a clear and orderly structure and the highlighting of core arguments.
- Sentences in clear and plain English—this includes correct grammar, spelling and punctuation.
- Correct referencing in accordance with the prescribed citation and style guide.

All other assignments involve numerical calculations, for which the following criteria will be used:

- Accuracy of numerical answers.
- All working shown (see Presentation above).
- Use of diagrams, where appropriate, to support or illustrate the calculations.
- Use of graphs, where appropriate, to support or illustrate the calculations.
- Use of tables, where appropriate, to support or shorten the calculations.
- Neatness

Examinations

There will be two final exams for this subject - one 2-hour examination in Module A and one 3-hour examination in Module B. These examinations will be held during exam week and will cover all materials in each module for the whole semester.

You must be available for all tests and examinations. Final examinations for each course are held during the University examination periods, which are June for Semester 1 and November for Semester 2.

Provisional Examination timetables are generally published on myUNSW in May for Semester 1 and September for Semester 2

For further information on exams, please see the **Exams** section on the intranet.

Calculators

You will need to provide your own calculator, of a make and model approved by UNSW, for the examinations. The list of approved calculators is shown at student.unsw.edu.au/exam-approved-calculators-and-computers

It is your responsibility to ensure that your calculator is of an approved make and model, and to obtain an "Approved" sticker for it from the School Office or the Engineering Student Centre prior to the examination. Calculators not bearing an "Approved" sticker will not be allowed into the examination room.

Special consideration and supplementary assessment

For details of applying for special consideration and conditions for the award of supplementary assessment, see the School <u>intranet</u>, and the information on UNSW's <u>Special Consideration page</u>.

6. Expected resources for students

Module A

Course notes will be distributed in lecture classes & available on the Moodle website.

Textbook

Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2002), Concepts and Applications of Finite Element Analysis, Fourth Edition, Wiley.

Finite element programs

The School has licenses for ANSYS. Geometry may be created in ANSYS or in CATIAv5 or Pro/ENGINEER.

Additional materials provided in Moodle

The Moodle website will be used to distribute notes, assignments and grades. The announcements tool will be used to answer general questions, correct errors that may appear from time to time in assignments and handouts and alert of any known traps in the modelling process.

Recommended Internet sites

There are many websites giving lectures and guidance for finite element modeling. These are maintained by the software developers. For example: www.mscsoftware.com and www.ansys.com

Module B

Printed notes will be handed out whenever needed.

Textbooks

In addition to the printed handouts, the following textbooks will be used as reference materials.

Mallick, P.K. (1993), Fiber-reinforced Composites, 2nd Edition, Marcel Dekker, New York.

Hyer, M.W. (2009), Stress Analysis of Fiber-reinforced Composite Materials, DESTech Publications, Lancaster, Pennsylvania.

You are advised to purchase a copy of the text by Hyer if possible.

Additional materials provided in Moodle

The Moodle website includes:

- Previous examination papers in NAVL4410 from 2009 onwards;
- Answers to the numerical questions in NAVL4410 from 2009 onwards.

Recommended Internet Sites

Useful websites will be advised in the class.

7. Course evaluation and development

Feedback on the course is gathered periodically using various means, including the Course and Teaching Evaluation and Improvement (CATEI) process, informal discussion in the final class for the course, and the School's Student/Staff meetings. Your feedback is taken

seriously, and continual improvements are made to the course based, in part, on such feedback.

A change in this course this year is the retention of finite-element methods for NAVL students, following the discontinuation of MMAN3540 Computational Engineering.

8. Academic honesty and plagiarism

UNSW has an ongoing commitment to fostering a culture of learning informed by academic integrity. All UNSW students have a responsibility to adhere to this principle of academic integrity. Plagiarism undermines academic integrity and is not tolerated at UNSW. *Plagiarism at UNSW is defined as using the words or ideas of others and passing them off as your own.*

Plagiarism is a type of intellectual theft. It can take many forms, from deliberate cheating to accidentally copying from a source without acknowledgement. UNSW has produced a website with a wealth of resources to support students to understand and avoid plagiarism: student.unsw.edu.au/plagiarism The Learning Centre assists students with understanding academic integrity and how not to plagiarise. They also hold workshops and can help students one-on-one.

You are also reminded that careful time management is an important part of study and one of the identified causes of plagiarism is poor time management. Students should allow sufficient time for research, drafting and the proper referencing of sources in preparing all assessment tasks.

If plagiarism is found in your work when you are in first year, your lecturer will offer you assistance to improve your academic skills. They may ask you to look at some online resources, attend the Learning Centre, or sometimes resubmit your work with the problem fixed. However more serious instances in first year, such as stealing another student's work or paying someone to do your work, may be investigated under the Student Misconduct Procedures.

Repeated plagiarism (even in first year), plagiarism after first year, or serious instances, may also be investigated under the Student Misconduct Procedures. The penalties under the procedures can include a reduction in marks, failing a course or for the most serious matters (like plagiarism in an honours thesis) even suspension from the university. The Student Misconduct Procedures are available here:

www.gs.unsw.edu.au/policy/documents/studentmisconductprocedures.pdf

Further information on School policy and procedures in the event of plagiarism is available on the intranet.

9. Administrative matters

All students are expected to read and be familiar with School guidelines and polices, available on the intranet. In particular, students should be familiar with the following:

- Attendance, Participation and Class Etiquette
- <u>UNSW Email Address</u>
- Computing Facilities
- <u>Assessment Matters</u> (including guidelines for assignments, exams and special consideration)
- Academic Honesty and Plagiarism
- Student Equity and Disabilities Unit
- Health and Safety
- Student Support Services

M Chowdhury 18 July 2016

Appendix A: Engineers Australia (EA) Stage I Competencies for Professional Engineers

	Program Intended Learning Outcomes
	PE1.1 Comprehensive, theory-based understanding of underpinning fundamentals
PE1: Knowledge and Skill Base	PE1.2 Conceptual understanding of underpinning maths, analysis, statistics, computing
owle ≡ B	PE1.3 In-depth understanding of specialist bodies of knowledge
E1: Knowledg and Skill Base	PE1.4 Discernment of knowledge development and research directions
PE1	PE1.5 Knowledge of engineering design practice
	PE1.6 Understanding of scope, principles, norms, accountabilities of sustainable engineering practice
ing	PE2.1 Application of established engineering methods to complex problem solving
eer Ab	PE2.2 Fluent application of engineering techniques, tools and resources
PE2: Engineering Application Ability	PE2.3 Application of systematic engineering synthesis and design processes
PE2 App	PE2.4 Application of systematic approaches to the conduct and management of engineering projects
	PE3.1 Ethical conduct and professional accountability
PE3: Professional and Personal Attributes	PE3.2 Effective oral and written communication (professional and lay domains)
Profession of Person Attributes	PE3.3 Creative, innovative and pro-active demeanour
3: Pr Ind F Attı	PE3.4 Professional use and management of information
PE	PE3.5 Orderly management of self, and professional conduct
	PE3.6 Effective team membership and team leadership