

Course outline

Semester 1 2017

Never Stand Still

Engineering

Mechanical and Manufacturing Engineering

MMAN2400 MECHANICS OF SOLIDS

Contents

1.	Staff contact details	2
	Contact details and consultation times for course convenor	2
	Contact details and consultation times for additional lecturers/demonstrators/lab staff	2
2.	Course details	
	Contact hours	3
	Summary of the course	3
	Aims of the course	4
	Student learning outcomes	4
3. 4. 5.	Course schedule	5 7
	Assignments	9
	Presentation	9
	Submission	9
	Marking	.10
	Examinations	.10
	Calculators	.10
	Special consideration and supplementary assessment	10
6. 7. 8. 9.	Course evaluation and development	.11
	opendix A: Engineers Australia (EA) Competencies	

1. Staff contact details

Contact details and consultation times for course convenor

Name: Dr. David C. Kellermann Office location: Ainsworth 208A

Tel: (02) 9385 4165

Email: <u>d.kellermann@unsw.edu.au</u>

Contact details for Head Demonstrator

Name: Mr. Muhammad Danish Haneef Office location: Ainsworth 408, Desk 20

Email: m.haneef@unsw.edu.au

Queries and consultation

For queries and consultation, proceed in the following order:

- 1) Ask your peers
- 2) Ask your demonstrator
- 3) Post to the Moodle forum
- 4) Email the head demonstrator
- 5) Email your lecturer
- 6) Arrange for a consultation time with your lecturer

If you email your head demonstrator or lecturer, please include all information in the email, for example, rather than saying "in Question 5 of the problem set", take a screenshot or photo of Question 5 so we can answer your question on the spot.

Contact details and consultation times for additional demonstrators:

Name	Contact email address
Muhammad Danish Haneef	m.haneef@unsw.edu.au
(HEAD DEMONSTRATOR)	
Mahiuddin Chowdhury	m.chowdhury@unsw.edu.au
Alireza Moridi Farimani	alireza@unsw.edu.au
Achinta Varna Hanglur Srinivas	a.varna@unsw.edu.au
Mohammad Eshan Khaled	mohammad.khaled@unsw.edu.au
James Thomas Pritchard	jimmy.pritchard@hotmail.com
Matthew Benjamin Eyles	mattheweyles51@gmail.com
Yeng Joe Sun	Jjaysun92@gmail.com
Ebrahim Oromiehie	e.oromiehie@unsw.edu.au
Harrison Low	harrison.a.low@gmail.com

2. Course details

Credit Points

This is a 6 unit-of-credit (UoC) course, and involves at least 6 hours per week (h/w) of faceto-face contact.

The UNSW website states "The normal workload expectations of a student are approximately 25 hours per semester for each UoC, including class contact hours, other learning activities, preparation and time spent on all assessable work. Thus, for a full-time enrolled student, the normal workload, averaged across the 16 weeks of teaching, study and examination periods, is about 37.5 hours per week."

This means that you should aim to spend about 9 h/w on this course. The additional time should be spent in making sure that you understand the lecture material, completing the set assignments, further reading, and revising for any examinations.

Contact hours

	Day	Time	Location
Lecture	Monday	4:10pm - 6pm	In Person: Ainsworth G03
Lecture	Williay	4. 10pm - 0pm	Distance: Web- Moodle live stream
	Friday	2:10pm - 4pm	In Person: Rex Vowels Theatre
	Filuay	2.10pm - 4pm	Distance: Web- Moodle live stream
Problem	Wednesday	09:00 - 11:00	Ainsworth Building G01
	Wednesday	11:00 - 13:00	Ainsworth Building G01
	Wednesday	13:00 - 15:00	Ainsworth Building G01
	Wednesday	15:00 - 17:00	Ainsworth Building G01
	Thursday	09:00 - 11:00	Ainsworth Building 101
	Thursday	12:00 - 14:00	Blockhouse G13
	Thursday	14:00 - 16:00	Mathews 230
	Thursday	16:00 - 18:00	Quadrangle G031
	Friday	10:00 - 12:00	Quadrangle G044
	Friday	12:00 - 14:00	Quadrangle G044

Summary of the course

Mechanics of Solids is a foundational subject for all engineers - essentially, it is the extension of engineering mechanics from rigid bodies to deformable bodies and the associated stress, strain and deformations. This is a second-year undergraduate course, worth 6 Units of credit. It builds on the statics component of MMAN1300 Engineering Mechanics 1, and some of the concepts from that course are amplified here. This course, together with its successor, MMAN3400 Mechanics of Solids 2, provide the foundations for subsequent structural design courses MECH3110 Mechanical Design 1, MECH4100

Mechanical Design 2, AERO4410 Advanced Aerospace Structures and Vibrations and so on.

Aims of the course

The aim of this course is to study the relationships between the *external* loads applied to deformable body and the intensity of *internal* forces or *stresses* acting within the body. It also involves the study of deformations or *strains* caused by external loads.

Based on linear elastic material behaviour you will be given sufficient understanding of the relationships between stress and strain in two and three dimensions.

The yield criteria for static loading and fatigue and fracture under repetitive loading will be covered to enable you to design structures, machines and components.

Student learning outcomes

This course is designed to address the below learning outcomes and the corresponding Engineers Australia Stage 1 Competency Standards for Professional Engineers as shown. The full list of Stage 1 Competency Standards may be found in Appendix A.

After successfully completing this course, you should be able to:

Learn	ning Outcome	EA Stage 1 Competencies		
LC1.	Recognise the fundamentals of Solid Mechanics	PE1.1, 1.2		
LC2.	Demonstrate the fundamentals of stresses and strains	PE1.3		
LC3.	Identify and express the principles of Solid Mechanics in obtaining the solutions for applications in real life engineering problems PE1.3			
LC4.	Identify and express the principles of Solid Mechanics in obtaining the solutions for applications in real life engineering problems	PE1.3		
LC5.	Create and Develop "engineers' eyes"	PE2.1, 2.2, 2.3		

3. Teaching strategies

Component	Activities	
	Find out what you must learn	
Lectures	See methods that are not in the textbook	
	Follow worked examples	
	Hear announcements on course changes	

	e guided by course not	es and demonstrators		
Problem Solving	Ask questions Do problems, as set out in the course notes			
Session				
	tudy an aspect of mech	nanics of solids		
	Work with colleagues			
	eview lecture material	and textbook		
	Do set problems and assignments			
Drivete etudy	Discuss with friends			
Private study (including Moodle)	Adaptive Tutorials			
(including woodle)	Join Moodle discussions of problems			
	Download materials from Moodle			
	Keep up with notices and find out marks via Moodle			
Assessments (Block Tests, Adaptive Tutorials, Laboratories and Final Exam)	emonstrate your basic earn from feedback emonstrate higher und	knowledge and skills erstanding and problem solving		

4. Course schedule

Topics

Notes	Section Assessed activiti	
 Equilibrium of deformable bodies, internal forces or stress resultants Normal and shear stress and strain Mechanical properties of materials; Hooke's law, St Venant principle, Poisson ratio, strain energy Stresses and deformations of axially loaded members 	Block 1 Revision of Statics and more	Adaptive Tutorial Exercise 1 Mechanics Fundamentals Launch (Wk 1) Due (Wk 3) *Block test 1 (Wk 4, 24/3/2017, 6-7 pm)
 Stresses and deformations in torsion of circular shafts; helical springs Bending of beams – Shear force and bending Moment diagrams Flexural and Shear stresses in a straight beam Slope and displacement of beams by various methods 	Block 2 Basics of Stress and Strain	Adaptive Tutorial Exercise 2 Torsion, SF & BM Launch (Wk 4), Due (Wk 6) Lab experiments (Deflection and Torsion in Wk 3, 4 and 5) Lab assignment submission (Deflection, Torsion) due (Wk 6) *Block test 2 (Wk 8, 28/4/2017, 6-7 pm)

 Stresses and deformations of thinwalled cylindrical pressure vessels Combined stresses; variation of stress at a point in two and three dimensions Strain transformations in two dimension; strain gauges, generalised Hooke's law 	Block 3 2 D & 3D Stresses, Strains and applications	Adaptive Tutorial Exercise 3 2D & 3D Mohr's Circle Launch (Wk 7) Due (Wk 10) Laboratory experiments (Fatigue and Beam Stress in Wk 8, 9 and 10)		
		*Block test 3 (Wk 10, 12/5/2017, 6-7 pm)		
 Strain energy in a linearly elastic body, Displacements by energy methods Theories of Failure-Criteria under static loading Theories of Failure-Criteria under repetitive loading; Stress concentrations 	Block 4 Energy Methods, Yield Criteria, Repetitive Loading	Adaptive Tutorial Exercise 4 Design for components Launch (Wk 11) Due (Wk 13) Lab assignment submission(Fatigue, Beam Stress) due (Wk 11) *Block test 4 (Wk 13, 2/6/2017, 6-7 pm)		
FINAL EXAM				

Weekly schedule

Week	2 x 24hrs Lecture	2 hrs PSS	Text book by R. C. Hibbeler	
Equilibrium of deformable bodies, internal forces or stress resultants		General	Sections 1.2, 1.3, 1.5, 3.2, 3.5, 3.6 &4.1	
2	Normal and shear stress and strain	General	Section 2.2	
Mechanical properties; Hooke's law, St Venant principle, Poisson ratio, strain energy. Stresses and deformations of axially loaded members BLOCK TEST 1		General	Sections 1.5, 1.6, 4.2, 4.4 & 4.6	
4	Stresses and deformations in torsion of circular shafts; helical springs	General	Sections 5.1, 5.2, 5.3, 5.4 & 5.5	
5	Bending of beams – Shear force and bending Moment diagrams, Flexural and Shear Stresses in a straight beam	General	Sections 6.1, 6.2, 6.3 & 6.4. Sections 7.1,7.2 &7.3	

			1
6	Slope and displacement of beams by various methods BLOCK TEST 2	General	Sections 12.1, 12.2 & 12.3
7	Stresses and deformations of thin- walled cylindrical pressure vessels	General	Section 8.1
8	Combined stresses; variation of stress at a point in two and three dimensions	General	Sections 9.1, 9.2, 9.3, 9.4 & 9.7
9	Strain transformations in two and three dimensions, strain gauges, generalized Hooke's law	General	Sections 9.1, 9.2, 9.3, 9.4 & 9.7
10	Strain transformations in two and three dimensions, strain gauges, generalized Hooke's law BLOCK TEST 3	General	Sections 10.1, 10.2, 10.3, 10.4, 10.5 & 10.6
11	Strain energy in a linearly elastic body, Displacements by energy methods	General	Sections 14.1, 14.2, 14.3 & 14.8
12	Theories of Failure-Criteria under static and *repetitive loading, *stress concentrations	General	Section 10.7 *Topic is not available in Hibbeler
13	BLOCK TEST 4		
Exam			

^{*} Topics during the weekly teaching format might be varied or changed

5. Assessment

Assessment overview

We need to find out how well you have:

- grasped the fundamentals of stress and strains
- become proficient in developing an understanding for engineering applications
- become proficient in calculation layout and development
- developed correct, professional technique
- become proficient in using solid mechanics fundamentals to solve practical problems
- come to see the world through "engineers' eyes"
- prepared yourself for higher structural engineering courses.

Assessment is based on the topic blocks. Basic knowledge is assessed after each one. Marks are awarded as follows.

Δ.	Type of assessment	Basic marks and weighting	Length	Learning outcomes assessed	Due date	Deadline for absolute fail	Marks returned	
Е	Block tests 1			LC1, 2	24/3/17 (Wk 4)	-	Week 5	
Е	Block tests 2	4x7 = 28	45 minutes	LC1, 2, 3	28/4/17 (Wk 8)	-	Week 9	
E	Block tests 3	1	45 minutes	LC2, 3	12/5/17 (Wk 10)	-	Week 11	
Е	Block tests 4			LC2, 3, 4	2/6/17 (Wk 13)	-	Study period	
		Torsion = 4		LC1, 2	7/4/17 (Wk 6)	11/4/17	Week 8	
Lak	ooratory report	Deflection = 4	10 pages	LC1, 2	7/4/17 (Wk 6)	11/4/17	Week 8	
Lai	oratory report	Beam Stress = 4	max	max	LC2, 3	26/5/17 (Wk 12)	30/5/17	Week 13
		Fatigue = 4			LC2, 3, 4	26/5/17 (Wk 12)	30/5/17	Week 13
	PSS Hand-ins	N/A		LC1-5	Wk X+1	Wk X+2		
rials	Mechanics Fundamentals	1		LC1, 2	Wk 3	Thursday 9pm		
and Adaptive Tutorials	Torsion	1		LC1, 2	Wk 6	Thursday 9pm		
daptiv	SF & BM	1	N/A	LC1, 2	Wk 7	Thursday 9pm	Instant	
and A	2D & 3D- Mohr's circle	1		LC3, 4	Wk 11	Thursday 9pm		
PSS	Stress/strain transformation	1		LC3, 4	Wk 12	Thursday 9pm		
	Design of Components	1		LC3, 4, 5	Wk 13	Thursday 9pm		
que	xam (written stions covering whole course)	40	2 hours	LC1, 2, 3, 4, 5	During exam period	-	During release of results	
		Course Total: 100						

Assessment Criteria

Block Tests and Final examination:

- Use the basic concepts such as Free-Body Diagrams (FBD) and Equations of Equilibrium (EoE)
- Systematic approach to outline the steps for a problem and use the necessary fundamental concepts covered in the lectures and problem solving sessions.
- Correctness of the solution with the aid of necessary diagrams/sketches and the use of appropriate units.

Laboratory Reports:

- Interpretation of the experimental results for the required information described in the hand out for each experiment
- Understanding the relationship between the theory covered during the lectures to experimental results in the laboratory
- Presentation of report in accordance with the MECHENG guidelines
- Attendance and participation during the laboratory experiments.

eLearning exercise:

- Demonstrating the basic understanding of the concepts for each exercise while working out the given examples
- Number of attempts taken to arrive at the correct solution.
- Correctness of the solution with the use of appropriate sign, magnitude & units.

A pass in this course requires a mark of 50% in the final examination.

Assignments

Presentation

All submissions are expected to be neat and clearly set out. Your results are the pinnacle of all your hard work and should be treated with due respect. Presenting results clearly gives the marker the best chance of understanding your method; even if the numerical results are incorrect.

Submission

Late submissions will be penalised 1 mark per calendar day (including weekends) until zero. An extension may only be granted in exceptional circumstances. Where an assessment task is worth less than 20% of the total course mark and you have a compelling reason for being unable to submit your work on time, you must seek approval for an extension from the course convenor *before the due date*. Special consideration for assessment tasks of 20% or greater must be processed through <u>student.unsw.edu.au/special-consideration</u>.

It is always worth submitting late assessment tasks when possible. Completion of the work, even late, may be taken into account in cases of special consideration.

Where there is no special consideration granted, the 'deadline for absolute fail' in the table above indicates the time after which a submitted assignment will not be marked, and will achieve a score of zero for the purpose of determining overall grade in the course.

Marking

Marking guidelines for assignment submissions will be provided at the same time as assignment details to assist with meeting assessable requirements. Submissions will be marked according to the marking guidelines provided.

Examinations

Inability to attend the block tests on one of these times for reasons such as work commitments, holidays etc. cannot, unfortunately, be accommodated with a class of this size. Of course, arrangements will be made for emergencies such as illness. Arrangements for each type of assessment are tabulated below.

Type of Assessment	
Block tests 1-4	No supplementary tests
Adaptive Tutorial exercise	Online submission
Laboratory	Reports submission via Moodle
Final Examination	Standard UNSW arrangements

You must be available for all tests and examinations. Final examinations for each course are held during the University examination periods, which are June for Semester 1 and November for Semester 2.

Provisional Examination timetables are generally published on myUNSW in May for Semester 1 and September for Semester 2

For further information on exams, please see the **Exams** section on the intranet.

Calculators

You will need to provide your own calculator, of a make and model approved by UNSW, for the examinations. The list of approved calculators is shown at student.unsw.edu.au/exam-approved-calculators-and-computers

It is your responsibility to ensure that your calculator is of an approved make and model, and to obtain an "Approved" sticker for it from the School Office or the Engineering Student Centre prior to the examination. Calculators not bearing an "Approved" sticker will not be allowed into the examination room.

Special consideration and supplementary assessment

For details of applying for special consideration and conditions for the award of supplementary assessment, see the School <u>intranet</u>, and the information on UNSW's Special Consideration page.

6. Expected resources for students

Available through the UNSW bookshop:

Hibbeler, Mechanics of Materials SI 9th edition PRENTICE-HALL (ISBN: 9781486025091)

Moodle site for MMAN 2400 Mechanics of Solids 1. Access via https://moodle.telt.unsw.edu.au/login

Other Resources

If you wish to explore any of the lecture topics in more depth, then other resources are available and assistance may be obtained from the UNSW Library: https://www.library.unsw.edu.au/

7. Course evaluation and development

Feedback on the course is gathered periodically using various means, including the myExperience process, informal discussion in the final class for the course, and the School's Student/Staff meetings. Your feedback is taken seriously, and continual improvements are made to the course based, in part, on such feedback.

Feedback from a previous instance of the course suggested that a large number of small assessment tasks were conducive to accumulating knowledge in mechanics of solids. Few suggestions were raised from the previous year with regards to instructions in the lab handout. Recent improvements to the course as a response to student feedback include:

- Providing clear instructions in the lab handouts for what to be assessed.
- Changing report submission date to return reports with feedback to students prior to the study period.

You are greatly encouraged to provide feedback on all aspects of the course using email and the discussion forum within Moodle.

8. Academic honesty and plagiarism

UNSW has an ongoing commitment to fostering a culture of learning informed by academic integrity. All UNSW students have a responsibility to adhere to this principle of academic integrity. Plagiarism undermines academic integrity and is not tolerated at UNSW. *Plagiarism at UNSW is defined as using the words or ideas of others and passing them off as your own.*

Plagiarism is a type of intellectual theft. It can take many forms, from deliberate cheating to accidentally copying from a source without acknowledgement. UNSW has produced a website with a wealth of resources to support students to understand and avoid plagiarism: student.unsw.edu.au/plagiarism The Learning Centre assists students with understanding academic integrity and how not to plagiarise. They also hold workshops and can help students one-on-one.

You are also reminded that careful time management is an important part of study and one of the identified causes of plagiarism is poor time management. Students should allow sufficient time for research, drafting and the proper referencing of sources in preparing all assessment tasks.

If plagiarism is found in your work when you are in first year, your lecturer will offer you assistance to improve your academic skills. They may ask you to look at some online resources, attend the Learning Centre, or sometimes resubmit your work with the problem fixed. However more serious instances in first year, such as stealing another student's work or paying someone to do your work, may be investigated under the Student Misconduct Procedures.

Repeated plagiarism (even in first year), plagiarism after first year, or serious instances, may also be investigated under the Student Misconduct Procedures. The penalties under the procedures can include a reduction in marks, failing a course or for the most serious matters (like plagiarism in an honours thesis) even suspension from the university. The Student Misconduct Procedures are available here:

www.gs.unsw.edu.au/policy/documents/studentmisconductprocedures.pdf

Further information on School policy and procedures in the event of plagiarism is available on the intranet.

9. Administrative matters

All students are expected to read and be familiar with School guidelines and polices, available on the intranet. In particular, students should be familiar with the following:

- Attendance, Participation and Class Etiquette
- UNSW Email Address
- Computing Facilities
- <u>Assessment Matters</u> (including guidelines for assignments, exams and special consideration)
- Academic Honesty and Plagiarism
- Student Equity and Disabilities Unit

- Health and Safety
- Student Support Services

Dr. David C. Kellermann 17 February 2017

Appendix A: Engineers Australia (EA) Competencies

Stage 1 Competencies for Professional Engineers

	Program Intended Learning Outcomes
PE1: Knowledge and Skill Base	PE1.1 Comprehensive, theory-based understanding of underpinning fundamentals
	PE1.2 Conceptual understanding of underpinning maths, analysis, statistics, computing
	PE1.3 In-depth understanding of specialist bodies of knowledge
	PE1.4 Discernment of knowledge development and research directions
	PE1.5 Knowledge of engineering design practice
	PE1.6 Understanding of scope, principles, norms, accountabilities of sustainable engineering practice
PE2: Engineering Application Ability	PE2.1 Application of established engineering methods to complex problem solving
	PE2.2 Fluent application of engineering techniques, tools and resources
	PE2.3 Application of systematic engineering synthesis and design processes
	PE2.4 Application of systematic approaches to the conduct and management of engineering projects
PE3: Professional and Personal Attributes	PE3.1 Ethical conduct and professional accountability
	PE3.2 Effective oral and written communication (professional and lay domains)
	PE3.3 Creative, innovative and pro-active demeanour
	PE3.4 Professional use and management of information
	PE3.5 Orderly management of self, and professional conduct
	PE3.6 Effective team membership and team leadership