Contents

1. Staff contact details ... 3
 Contact details and consultation times for course convenor .. 3
 Contact details and consultation times for additional lecturers/demonstrators/lab staff 3
2. Course details ... 3
 Credit Points ... 3
 Contact hours .. 4
 Summary of the course ... 4
 Aims of the course .. 4
 Student learning outcomes ... 5
3. Teaching strategies ... 5
4. Course schedule ... 6
5. Assessment ... 8
 Assignments ... 9
 Presentation .. 9
 Submission ... 9
 Examinations .. 9
 Calculators .. 10
 Special consideration and supplementary assessment ... 10
6. Expected resources for students ... 10
7. Course evaluation and development ... 13
8. Academic honesty and plagiarism ... 13
9. Administrative matters and links .. 14
Appendix A: Engineers Australia (EA) Competencies ... 15

Course Outline: NAVL3710
1. Staff contact details

Contact details and consultation times for course convenor

Mr David Lyons FRINA (teaching Part B: Resistance, Powering and Propulsion component)
Naval Architecture Stream Co-Ordinator
Room 208D, Ainsworth Building J17
Email david.lyons@unsw.edu.au
Tel (02) 9385 6120 or 0418 208370 (send SMS or leave voicemail if unattended)

Consultation concerning this Course is available by email, by phone or in person. For an in-person appointment, please contact David by email first or see him in class on Wednesdays.

Contact details and consultation times for additional lecturers/demonstrators/lab staff

Mr Mel Atack (teaching Part A: Machinery component)
Tel 0417 177967
Email melvinatack@hotmail.com

2. Course details

Credit Points

This is a 6 unit-of-credit (UoC) course, and involves up to 5 hours per week (h/w) of face-to-face contact.

The UNSW website states “The normal workload expectations of a student are approximately 25 hours per semester for each UoC, including class contact hours, other learning activities, preparation and time spent on all assessable work. Thus, for a full-time enrolled student, the normal workload, averaged across the 16 weeks of teaching, study and examination periods, is about 37.5 hours per week.”

This means that you should aim to spend about 9 h/w on this course. The additional time should be spent in making sure that you understand the lecture material, completing the set assignments, further reading, and revising for any examinations.

There is no parallel teaching in this course.
Contact hours

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture: Part B - Mr Lyons</td>
<td>Monday 2pm – 5pm</td>
<td>Business School 205</td>
</tr>
<tr>
<td>Lecture: Part A - Mr Atack</td>
<td>Thursday 10am – 12noon</td>
<td>Business School 205</td>
</tr>
</tbody>
</table>

Summary of the course

This course focuses on the ship propulsion train and auxiliary machinery required, ship resistance and the prediction of the power required for propulsion and shipbuilding contracts and equipment. It is divided into:

Part A – Machinery
Part B – Resistance, Powering & Propulsion

Aims of the course

This course enables you to explore the principal means of ship power (diesel engines, gas turbines, steam turbines, diesel electric, etc.), the transmission system, and the requirements of the auxiliary machinery for hotel loads.

You are also given the tools of current numerical methods of resistance prediction so that you can predict the power required to provide a contracted speed or, for a tug, a contracted bollard pull. Propeller design and waterjet installations are studied and design procedures are learned.

This course uses the ship terminology which you learned in NAVL3610. It uses thermodynamic principles from MMAN2700 and electrical principles from ELEC1111, and builds on the report-writing skills which you commenced in ENGG1000.
Student learning outcomes

This course is designed to address the learning outcomes below and the corresponding Engineers Australia Stage 1 Competency Standards for Professional Engineers as shown. The full list of Stage 1 Competency Standards may be found in Appendix A.

After successfully completing this course, you should be able to:

<table>
<thead>
<tr>
<th>Learning Outcome</th>
<th>EA Stage 1 Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Decide on the most-appropriate form of mechanical propulsion for a new vessel and specify the transmission system and auxiliary machinery.</td>
<td>PE1.3, PE1.5, PE2.1, PE2.2, PE2.3</td>
</tr>
<tr>
<td>2. Understanding SOLAS systems and automation.</td>
<td>PE2.1-2.3</td>
</tr>
<tr>
<td>3. Be conversant with a range of ship resistance prediction methods.</td>
<td>PE1.1, PE1.2, PE2.2</td>
</tr>
<tr>
<td>4. Analyse the propulsion power required by way of the resistance or bollard-pull characteristics.</td>
<td>PE1.1, PE1.2, PE2.2</td>
</tr>
<tr>
<td>5. Be competent in the fundamentals of propulsion design: propellers and water jet installations.</td>
<td>PE2.1-2.4</td>
</tr>
<tr>
<td>6. Deciding propeller particulars</td>
<td>PE2.1-2.3</td>
</tr>
<tr>
<td>7. Propeller analysis</td>
<td>PE2.1-2.3</td>
</tr>
</tbody>
</table>

3. Teaching strategies

Lectures in the course are designed to cover the terminology and core concepts and theories in the design of propulsion trains, auxiliary machinery, shipbuilding contracts and equipment. They do not simply reiterate the texts, but build on the lecture topics using examples taken directly from industry to show how the theory is applied in practice and the details of when, where and how it should be applied.
4. Course schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Week</th>
<th>Mon</th>
<th>Thu</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/7/17</td>
<td>1 x</td>
<td></td>
<td></td>
<td>Part B - Resistance & Powering: Components of resistance and methods of calculation</td>
</tr>
<tr>
<td>27/7/17</td>
<td></td>
<td></td>
<td>x</td>
<td>Part A - Selection criteria for main propulsion and other systems</td>
</tr>
</tbody>
</table>
| 31/7/17 | 2 x | | | Part B - Resistance & Powering: USNA patrol vessel series and Radojcic et al. methods
Propulsion: Blade sections, fluid flow and power transmission |
| 3/8/17 | | | x | Part A - Steam plant |
| 7/8/17 | 3 x | | | Part B - Resistance & Powering: Mercier and Savitsky, and Lahtiharju et al. methods
Propulsion: Hull–propeller interaction |
| 10/8/17 | | | | Part A - Diesel plant |
| 14/8/17 | 4 x | | | Part B - Resistance & Powering: Van Oortmerssen’s and Holtrop’s methods
Propulsion: Laws of similarity and scaling |
| 17/8/17 | | | x | Part A - Gas turbine plant, turbo and diesel-electric combinations |
| 21/8/17 | 5 x | | | Part B - Resistance & Powering: Robinson’s and Ridgeley-Nevitt’s methods
Propulsion: Presentation of thrust and torque data for series propellers |
| 24/8/17 | | | x | Part A - Shafting |
| 28/8/17 | 6 x | | | Part B - Resistance & Powering: Using commercial resistance-prediction software packages
Propulsion: Theories of propeller action |
| 31/8/17 | | | x | Part A - Gearing and power take-offs |
| 4/9/17 | 7 x | | | Part B - Resistance & Powering: Air and wind resistance
Propulsion: Cavitation |
| 7/9/17 | | | x | Part A - Electricity generation and distribution |
| 11/9/17 | 8 x | | | Part B - Resistance & Powering: Appendage resistance
Propulsion: Practical propeller design |
| 14/9/17 | | | x | Part A - Pumps, piping and compressors |
| 18/9/17 | 9 x | | | Part B - Resistance & Powering: Resistance in shallow water
Propulsion: Propeller details and drawing |
| 21/9/17 | | | x | Part A - Fuel-handling and treatment systems |
| 23/9/17-2/10/17 | | | | Mid-semester break |
| 3/10/17 | 10 x | | | Part B - Resistance & Powering: Ship squat
Propulsion: Strength, mass and polar moment of inertia |

Course Outline: NAVL3710
<table>
<thead>
<tr>
<th>Date</th>
<th>Session</th>
<th>Part A</th>
<th>Part B</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/10/17</td>
<td></td>
<td>x</td>
<td>Part A - Filters and purifiers</td>
</tr>
<tr>
<td>9/10/17</td>
<td>11</td>
<td>x</td>
<td>Part B - Resistance & Powering: Yacht resistance prediction: the Delft Systematic Yacht Hull Series</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Propulsion: Waterjet theory</td>
</tr>
<tr>
<td>12/10/17</td>
<td></td>
<td>x</td>
<td>Part A - Heat exchangers, distillation plant and hotel services</td>
</tr>
<tr>
<td>16/10/17</td>
<td>12</td>
<td>x</td>
<td>Part B - Resistance & Powering: Catamaran resistance prediction: Zips, Muller-Graf, Scott, Wong,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>and slender-body methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Propulsion: Practical waterjet design</td>
</tr>
<tr>
<td>19/10/17</td>
<td></td>
<td>x</td>
<td>Part A - SOLAS systems and automation</td>
</tr>
<tr>
<td>23/10/17</td>
<td>13</td>
<td>x</td>
<td>Revision and exam details: Parts A & B by David Lyons</td>
</tr>
</tbody>
</table>
5. Assessment

Assessment overview: Parts A and B are equally weighted

Part A: Machinery

<table>
<thead>
<tr>
<th>No.</th>
<th>Assignment</th>
<th>Weight</th>
<th>Learning outcomes assessed</th>
<th>Assessment criteria</th>
<th>Due date and submission requirements</th>
<th>Marks returned:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Terminology</td>
<td>15%</td>
<td>1</td>
<td>Correct identification and usage</td>
<td>Week 5: 24/8/17</td>
<td>2 weeks after submission</td>
</tr>
<tr>
<td>2</td>
<td>Gas turbine fuel and air</td>
<td>15%</td>
<td>1</td>
<td>Lecture material from weeks 1 and 4.</td>
<td>Week 7: 7/9/17</td>
<td>2 weeks after submission</td>
</tr>
<tr>
<td>3</td>
<td>Main machinery recommendation</td>
<td>15%</td>
<td>1</td>
<td>All course content from weeks 1-8.</td>
<td>Week 9: 21/9/17</td>
<td>2 weeks after submission</td>
</tr>
<tr>
<td>4</td>
<td>SOLAS requirements</td>
<td>15%</td>
<td>2</td>
<td>Correct reference to SOLAS requirement.</td>
<td>Week 11: 12/10/17</td>
<td>2 weeks after submission</td>
</tr>
</tbody>
</table>

Exam

<table>
<thead>
<tr>
<th>Weight</th>
<th>Learning outcomes assessed</th>
<th>Assessment criteria</th>
<th>Due date and submission requirements</th>
<th>Marks returned:</th>
</tr>
</thead>
<tbody>
<tr>
<td>40%</td>
<td>1,2</td>
<td>All Part A content.</td>
<td>Examination period: 4-19/11/17</td>
<td></td>
</tr>
</tbody>
</table>

Part B: Resistance, Powering & Propulsion

<table>
<thead>
<tr>
<th>No.</th>
<th>Assignment</th>
<th>Weight</th>
<th>Learning outcomes assessed</th>
<th>Assessment criteria</th>
<th>Due date and submission requirements</th>
<th>Marks returned:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>USNA & Lahtiharju resistance</td>
<td>15%</td>
<td>3</td>
<td>Application of methods</td>
<td>Week 5: 26/8/17</td>
<td>2 weeks after submission</td>
</tr>
<tr>
<td>2</td>
<td>Robinson’s resistance prediction</td>
<td>15%</td>
<td>3</td>
<td>Application of method</td>
<td>Week 7: 9/9/17</td>
<td>2 weeks after submission</td>
</tr>
</tbody>
</table>
Assignments

Presentation

All submissions should have a standard School cover sheet which is available from this course’s Moodle page.

All submissions are to be neatly typed and clearly set out. Presenting them clearly gives the marker the best chance of understanding your method; even if the numerical results are incorrect.

Submission

Part A: By hard copy in-class.
Part B: By email to david.lyons@unsw.edu.au

Late submissions will be penalised 5% of the available marks per calendar day (including weekends). An extension may only be granted in exceptional circumstances. Where an assessment task is worth less than 20% of the total course mark and you have a compelling reason for being unable to submit your work on time, you must seek approval for an extension from the course convenor **before the due date**. Special consideration for assessment tasks of 20% or greater must be processed through student.unsw.edu.au/special-consideration.

It is always worth submitting late assessment tasks when possible. Completion of the work, even late, may be taken into account in cases of special consideration.

Examinations

You must be available for all tests and examinations. The final School examination for this Course will be held during the University examination period 4-19 November 2017.
Provisional examination timetables are generally published on myUNSW in September for Semester 2.

For further information on exams, please see the Exams section on the intranet and contact the Course convenor.

Calculators

You will need to provide your own calculator, of a make and model approved by UNSW, for the examinations. The list of approved calculators is shown at student.unsw.edu.au/exam-approved-calculators-and-computers

It is your responsibility to ensure that your calculator is of an approved make and model, and to obtain an “Approved” sticker for it from the School Office or the Engineering Student Centre prior to the examination. Calculators not bearing an “Approved” sticker will not be allowed into the examination room.

Special consideration and supplementary assessment

For details of applying for special consideration and conditions for the award of supplementary assessment, see the School intranet, and the information on UNSW’s Special Consideration page.

6. Expected resources for students

Part A – Machinery
Students are given extensive lecture notes and Powerpoint presentations by the lecturer which are uploaded to Moodle.

Part B – Resistance, Powering and Propulsion
The Bentley Systems Maxsurf Resistance software is available for use in Ainsworth 204.

Classification society rules are available on the MECH computer system as follows:

- Det Norske Veritas Rules for High Speed Light Craft
- Rules for Ships
- Lloyd’s Register Rules for Special Service Craft
- Rules for Ships

All American Bureau of Shipping and DNV GL rules are available for download from the Internet.
General Textbooks

All of these are available in the UNSW Library.

The first is available via the Internet from the Bookshop of India at www.bookshopofindia.com for about $30 posted (depending on exchange rate).

The others are available for purchase from the Society of Naval Architects and Marine Engineers (SNAME) www.sname.org. However, the price to non-members usually exceeds the member price plus the cost of student membership, so it is advisable to join the Society and order the books at the same time. Please see the Course Convenor regarding joining procedures.

Suggested additional readings

Part A – Machinery

Except for Hall (1999), these are all available in the UNSW Library and are useful as additional reading material.

Rowen et al. (2005) is also available for purchase from the Society of Naval Architects and Marine Engineers, Jersey City, USA. However, the price to non-members (of any one book) exceeds the member price plus the cost of student membership, so it is advisable to join the Society and order the books at the same time. Please see the course convenor for an application form if you wish to do this.

Part B – Resistance, Powering and Propulsion

Additional materials provided in Moodle

This course has a website on UNSW Moodle which includes:

- copies of assignments (as they are issued), otherwise issue in-class;
- previous examination papers in this course from 2010 onwards;
- answers to the numerical questions in examinations from 2010 onwards; and
- a discussion forum.

The discussion forum is intended for you to use with other enrolled students. The course convenor will occasionally look at the forum and take note of any frequently-asked questions, but will not respond to questions on the forum. If you want help from the convenor then direct contact is preferred.

Recommended internet sites

There are many websites giving lectures, papers and data on ship terminology and design..

Principal particulars of many different types of vessels are available on the Internet. You might like to try the following for a start:

- **Austal Ships** www.austal.com
- **One2Three Naval Architects** www.one2three.com.au

There are also many websites giving lectures, papers and data on propellers and propeller design. Try searching for propellers, or propeller design.

You can check some of the propeller manufacturers:

- www.stonemanganese.co.uk
Other Resources

If you wish to explore any of the lecture topics in more depth, then other resources are available and assistance may be obtained from the UNSW Library.

UNSW Library website: https://www.library.unsw.edu.au/

7. Course evaluation and development

Feedback on the course is gathered periodically using various means, including the Course and Teaching Evaluation and Improvement (CATEI) process, informal discussion in the final class for the course, and the School’s Student/Staff meetings. Your feedback is taken seriously, and continual improvements are made to the course based, in part, on such feedback.

In this course, recent improvements resulting from student feedback include the alignment of component parts within the course that complement each other. To that end, the ship’s entire powering and propulsion train from the engines to the propeller are treated as a whole in order to meet the powering requirements that are assessed in order to overcome the vessel’s resistance.

8. Academic honesty and plagiarism

UNSW has an ongoing commitment to fostering a culture of learning informed by academic integrity. All UNSW students have a responsibility to adhere to this principle of academic integrity. Plagiarism undermines academic integrity and is not tolerated at UNSW. Plagiarism at UNSW is defined as using the words or ideas of others and passing them off as your own.

Plagiarism is a type of intellectual theft. It can take many forms, from deliberate cheating to accidentally copying from a source without acknowledgement. UNSW has produced a website with a wealth of resources to support students to understand and avoid plagiarism: student.unsw.edu.au/plagiarism The Learning Centre assists students with understanding academic integrity and how not to plagiarise. They also hold workshops and can help students one-on-one.

You are also reminded that careful time management is an important part of study and one of the identified causes of plagiarism is poor time management. Students should allow sufficient time for research, drafting and the proper referencing of sources in preparing all assessment tasks.

If plagiarism is found in your work when you are in first year, your lecturer will offer you assistance to improve your academic skills. They may ask you to look at some online
resources, attend the Learning Centre, or sometimes resubmit your work with the problem fixed. However more serious instances in first year, such as stealing another student’s work or paying someone to do your work, may be investigated under the Student Misconduct Procedures.

Repeated plagiarism (even in first year), plagiarism after first year, or serious instances, may also be investigated under the Student Misconduct Procedures. The penalties under the procedures can include a reduction in marks, failing a course or for the most serious matters (like plagiarism in an honours thesis) even suspension from the university. The Student Misconduct Procedures are available here: www.gs.unsw.edu.au/policy/documents/studentmisconductprocedures.pdf

Further information on School policy and procedures in the event of plagiarism is available on the intranet.

9. Administrative matters and links

All students are expected to read and be familiar with School guidelines and polices, available on the intranet. In particular, students should be familiar with the following:

- Attendance, Participation and Class Etiquette
- UNSW Email Address
- Computing Facilities
- Assessment Matters (including guidelines for assignments, exams and special consideration)
- Academic Honesty and Plagiarism
- Student Equity and Disabilities Unit
- Health and Safety
- Student Support Services

David Lyons FRINA
20 June 2017
Appendix A: Engineers Australia (EA) Competencies

Stage 1 Competencies for Professional Engineers

<table>
<thead>
<tr>
<th>PE1: Knowledge and Skill Base</th>
<th>Program Intended Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE1.1</td>
<td>PE1.1 Comprehensive, theory-based understanding of underpinning fundamentals</td>
</tr>
<tr>
<td>PE1.2</td>
<td>PE1.2 Conceptual understanding of underpinning maths, analysis, statistics, computing</td>
</tr>
<tr>
<td>PE1.3</td>
<td>PE1.3 In-depth understanding of specialist bodies of knowledge</td>
</tr>
<tr>
<td>PE1.4</td>
<td>PE1.4 Discernment of knowledge development and research directions</td>
</tr>
<tr>
<td>PE1.5</td>
<td>PE1.5 Knowledge of engineering design practice</td>
</tr>
<tr>
<td>PE1.6</td>
<td>PE1.6 Understanding of scope, principles, norms, accountabilities of sustainable engineering practice</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PE2: Engineering Application Ability</th>
<th>Program Intended Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE2.1</td>
<td>PE2.1 Application of established engineering methods to complex problem solving</td>
</tr>
<tr>
<td>PE2.2</td>
<td>PE2.2 Fluent application of engineering techniques, tools and resources</td>
</tr>
<tr>
<td>PE2.3</td>
<td>PE2.3 Application of systematic engineering synthesis and design processes</td>
</tr>
<tr>
<td>PE2.4</td>
<td>PE2.4 Application of systematic approaches to the conduct and management of engineering projects</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PE3: Professional and Personal Attributes</th>
<th>Program Intended Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE3.1</td>
<td>PE3.1 Ethical conduct and professional accountability</td>
</tr>
<tr>
<td>PE3.2</td>
<td>PE3.2 Effective oral and written communication (professional and lay domains)</td>
</tr>
<tr>
<td>PE3.3</td>
<td>PE3.3 Creative, innovative and pro-active demeanour</td>
</tr>
<tr>
<td>PE3.4</td>
<td>PE3.4 Professional use and management of information</td>
</tr>
<tr>
<td>PE3.5</td>
<td>PE3.5 Orderly management of self, and professional conduct</td>
</tr>
<tr>
<td>PE3.6</td>
<td>PE3.6 Effective team membership and team leadership</td>
</tr>
</tbody>
</table>