MECH4620

COMPUTATIONAL FLUID DYNAMICS
Contents

1. Staff contact details ... 2
 - Contact details and consultation times for course convenor 2
 - Contact details and consultation times for additional lecturers/demonstrators/lab staff 2

2. Important links ... 2

3. Course details .. 3
 - Credit Points ... 3
 - Contact hours .. 3
 - Summary and Aims of the course .. 3
 - Student learning outcomes ... 4

4. Teaching strategies .. 4

5. Course schedule ... 5

6. Assessment .. 6
 - Assessment overview ... 6
 - Assignments .. 7
 - Tutorial-style problems .. 7
 - Group project .. 7
 - Major project ... 7
 - Presentation .. 7
 - Submission .. 8
 - Marking .. 8
 - Examinations .. 8
 - Calculators ... 8
 - Special consideration and supplementary assessment 9

7. Attendance .. 9

8. Expected resources for students .. 9
 - Recommended textbooks ... 9
 - Other references ... 9
 - Recommended Internet sites .. 9
 - Additional materials provided in UNSW Moodle 9

9. Course evaluation and development .. 10

10. Academic honesty and plagiarism .. 10

11. Administrative matters and links ... 11

Appendix A: Engineers Australia (EA) Competencies 12
1. Staff contact details

Contact details and consultation times for course convenor

Name: Professor Guan Heng Yeoh
Office Location: Room 401B, J17
Tel: (02) 9385 4099
Fax: (02) 9663 1222
Email: g.yeoh@unsw.edu.au
Consultation times: Thursday 2-3pm
Communication preference: Email

Name: Dr Anthony Yuen
Office Location: Room 401, J17
Tel: (02) 9385 4763
Fax: (02) 9663 1222
Email: c.y.yuen@unsw.edu.au
Consultation times: Wednesday 2-3pm
Communication preference: Email

Contact details and consultation times for additional lecturers/demonstrators/lab staff

Name: Darson Li
Office Location: Room 401, J17
Tel: (02) 9385 4763
Fax: (02) 9663 1222
Email: darson.li@unsw.edu.au
Consultation times: Friday 2-3pm
Communication preference: Email

Please see the course Moodle.

2. Important links

- Moodle
- UNSW Mechanical and Manufacturing Engineering
- Course Outlines
- Student intranet
- UNSW Mechanical and Manufacturing Engineering Facebook
- UNSW Handbook
3. Course details

Credit Points

This is a 6 unit-of-credit (UoC) course, and involves 3 hours per week (h/w) of face-to-face contact.

The UNSW website states "The normal workload expectations of a student are approximately 25 hours per semester for each UoC, including class contact hours, other learning activities, preparation and time spent on all assessable work. Thus, for a full-time enrolled student, the normal workload, averaged across the 16 weeks of teaching, study and examination periods, is about 37.5 hours per week."

This means that you should aim to spend about 9 h/w on this course. The additional time should be spent in making sure that you understand the lecture material, completing the set assignments, further reading, and revising for any examinations.

Contact hours

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>Thursday</td>
<td>9:00am – 10:30am</td>
</tr>
<tr>
<td>Lab</td>
<td>Thursday</td>
<td>10:30am – 12:00pm</td>
</tr>
<tr>
<td>Lab</td>
<td>Thursday</td>
<td>10:30am – 12:00pm</td>
</tr>
<tr>
<td>Lab</td>
<td>Thursday</td>
<td>12:00pm – 1:30pm</td>
</tr>
</tbody>
</table>

Please refer to your class timetable for the learning activities you are enrolled in and attend only those classes.

Summary and Aims of the course

This course will focus on the terminology, principles and methods of CFD – Computational Fluid Dynamics.

CFD can be applied in many areas of engineering, including aerodynamics, hydrodynamics, air-conditioning and minerals processing, and you will find relevance towards many other courses you are currently taking.

The aims of the course are to:

- Place CFD in the context of a useful design tool for industry and a vital research tool for thermos-fluid research across many disciplines;
- Familiarize students with the basic steps and terminology associated with CFD. This includes developing students’ understanding of the conservation laws applied to fluid motion and heat transfer and basic computational methods including explicit, implicit methods, discretisation schemes and stability analysis;
- Develop practical expertise in solving CFD problems with a commercial CFD code, ANSYS CFX; and
- Develop an awareness of the power and limitations of CFD.

This course builds on knowledge gained in other courses such as Fluid Mechanics, Thermodynamics, and Numerical Methods.

Student learning outcomes

This course is designed to address the learning outcomes below and the corresponding Engineers Australia Stage 1 Competency Standards for Professional Engineers as shown. The full list of Stage 1 Competency Standards may be found in Appendix A.

After successfully completing this course, you should be able to:

<table>
<thead>
<tr>
<th>Learning Outcome</th>
<th>EA Stage 1 Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. An underlying understanding of the theoretical basis of CFD</td>
<td>PE1.1, PE1.2, PE1.4</td>
</tr>
<tr>
<td>2. The ability to develop a CFD model for "real world" engineering problems</td>
<td>PE2.1, PE2.2</td>
</tr>
<tr>
<td>3. The technical ability to address complex problems using CFD with the specific focus on developing practical skills in using a commercial CFD package, ANSYS CFX</td>
<td>PE1.3, PE1.5</td>
</tr>
<tr>
<td>4. The ability to interpret computational results and to write a report conveying the result of the computational analysis</td>
<td>PE3.1, PE3.2, PE3.3</td>
</tr>
</tbody>
</table>

4. Teaching strategies

Lectures in the course are designed to cover the terminology and core concepts and theories in CFD. They do not simply reiterate the texts, but build on the lecture topics using examples taken directly from industry to show how the theory is applied in practice and the details of when, where and how it should be applied. This course features recorded lectures, which are available via Moodle. This provides students with the opportunity to learn the lecture content online interactively in their own time.

Lab sessions are designed to provide you with feedback and discussion on the assignments, and to investigate problem areas in greater depth to ensure that you understand the application and can avoid making the same mistake again.
5. Course schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecturer</th>
<th>Topic</th>
<th>Work during laboratory session</th>
<th>Assignment Activity</th>
</tr>
</thead>
</table>
| 1 | GHY/AY | Introduction to CFD and ANSYS CFX | • Backward facing step exercise
• Problem setup | |
| 2 | AY | Defining a CFD problem
• Creating and/or Importing Geometry in Design Modeler | • Lab work on creating geometry and meshing | |
| 3 | GHY | Mass and momentum conservation and Navier-Stokes equations | • Lab work on creating geometry and meshing
• Heat exchanger exercise: Meshes
• Discussions of group and major project topics | |
| 4 | AY | Kinematic properties of fluids, energy conservation, and dynamic similarity | • Lab work on conservation laws (T1)
• Discussions of group and major project topics | Due: Major project proposal |
| 5 | GHY/AY | Initial and Boundary Conditions: practical guidelines | • Lab work on conservation laws (T1)
• Backward facing step exercise: Characterization of boundary conditions
• Heat exchanger exercise:
• Characterisation of boundary conditions | Due: T1: conservation laws |
| 6 | GHY | Turbulence: basics and introduction | • Backward facing step exercise: Convergence and Discretisation, Turbulence models, T2 work | Feedback: T1: conservation laws |
| 7 | GHY | Turbulence: applications of models | • Group and major project work, T2 work | Due: T2: turbulence |
| 8 | AY | Computational methods – discretisation | • Group and major project work
• Computational method online tutorial | Feedback: T2: turbulence |
| 9 | AY | Solution Procedures | • Group and major project work | Due: Group project report |
| 10 | AY | Post Processing – analysis of results. Validation and Verification | • Major project work | |
| 11 | GHY | Multiphase modelling and combustion | • Major project work | Feedback: Group project report |
| 12 | GHY/AY | Revision | • Major project work | Due: Major project report |
| 13 | GHY/AY | Consultation | No lab | |
6. Assessment

Assessment overview

You will be assessed by way of 2 sets of tutorial-style problems, one group project and one individual major project and a two-hour examination at the end of the session. Details of each assessment component, the marks assigned to it, the criteria by which marks will be assigned, and the dates of submission are given below.

<table>
<thead>
<tr>
<th>Assessment task</th>
<th>Length</th>
<th>Weight</th>
<th>Learning outcomes assessed</th>
<th>Assessment criteria</th>
<th>Due date, time, and submission requirements</th>
<th>Deadline for absolute fail</th>
<th>Marks returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial style problems</td>
<td>2-3 pages</td>
<td>10% (2x 5% each)</td>
<td>1 and 4</td>
<td>Understanding of lecture material</td>
<td>4 pm Friday, Week 5, Week 7 via Moodle</td>
<td>Same as assignment deadline</td>
<td>1 week after due date</td>
</tr>
<tr>
<td>Group Project</td>
<td>15 pages</td>
<td>15%</td>
<td>2, 3 and 4</td>
<td>See page 7 below</td>
<td>4 pm Friday, Week 9 via Moodle</td>
<td>4 pm Monday, Week 10</td>
<td>2 weeks after due date</td>
</tr>
<tr>
<td>Major Project</td>
<td>15 pages</td>
<td>25%</td>
<td>2, 3 and 4</td>
<td>See page 7 below</td>
<td>4 pm Friday, Week 12 via Moodle</td>
<td>4 pm Wednesday, Week 13</td>
<td>2 weeks after due date</td>
</tr>
<tr>
<td>Final exam</td>
<td>2 hours</td>
<td>50%</td>
<td>1</td>
<td>All course content from weeks 1-12</td>
<td>Exam period, date TBC</td>
<td>N/A</td>
<td>During exam period</td>
</tr>
</tbody>
</table>
Assignments

Tutorial-style problems

The short assignments containing 2 sets of tutorial-style problems (T1 and T2) are listed in the Course Schedule. They will involve theoretical work and calculations. Assignments will be available on the Moodle website.

Group project

The group project involves a complete CFD analysis, from the initial concept through to CAD, meshing, pre-processing, solving, and post-processing the results. The project description will be available on Moodle.

In Week 2, students need to complete a Moodle questionnaire for group allocation purposes. The groups and allocated project topics will be announced in Week 3.

The report to be submitted will be a technical report in the style of a journal article or industrial project report for a client familiar with CFD – a template will be provided to you which will also contain a structured marking criteria. The report will involve you writing an abstract/executive summary, and you will be required to conduct a short review of some similar CFD you are able to find in relevant journal papers. Following this, you will write a discussion of your chosen numerical method and assumptions, and then sections relating to mesh convergence, turbulence modelling, and presentation of key results – these reflect the topics which will be covered in depth in the lectures and labs and comprise the typical structure of a research report.

Major project

Similar to the group project, the major project involves a complete CFD analysis, but is to be completed individually. The subject of your CFD investigation will be of your own choice – if you are doing a CFD-related thesis, you are allowed to work on something that relates to that project if you wish. Otherwise, choose something you are interested in or you think may relate to the kind of work you’d like to do when you graduate (i.e. HVAC-style problem, racing car exhaust, wind study around a building, flow in an artery, etc.). However, if you are not confident in proposing your own topic, you have the option to choose from one of the three set problems to investigate. Nevertheless, proposing your own project is strongly recommended, and three (3) bonus marks will be awarded if you do so.

The report of the individual major project should be of similar quality as the group project report, but is to be written individually. The report is due at 4pm on Friday, Week 12. Additional details may be found in the template of the major project on Moodle.

Presentation

All submissions are expected to be neat and clearly set out. Your results are the pinnacle of all your hard work and should be treated with due respect. Presenting results clearly gives
the marker the best chance of understanding your method; even if the numerical results are incorrect.

Submission

Late submissions will be penalised 5 marks per calendar day (including weekends). An extension may only be granted in exceptional circumstances. Special consideration for assessment tasks must be processed through student.unsw.edu.au/special-consideration.

It is always worth submitting late assessment tasks when possible. Completion of the work, even late, may be taken into account in cases of special consideration.

Where there is no special consideration granted, the ‘deadline for absolute fail’ in the table above indicates the time after which a submitted assignment will not be marked, and will achieve a score of zero for the purpose of determining overall grade in the course.

Marking

Marking guidelines for assignment submissions will be provided at the same time as assignment details to assist with meeting assessable requirements. Submissions will be marked according to the marking guidelines provided.

Examinations

There will be a two-hour examination at the end of the semester.

You must be available for all tests and examinations. Final examinations for each course are held during the University examination periods, which are June for Semester 1 and November for Semester 2.

Provisional Examination timetables are generally published on myUNSW in May for Semester 1 and September for Semester 2.

For further information on exams, please see the Exams section on the intranet.

Calculators

You will need to provide your own calculator, of a make and model approved by UNSW, for the examinations. The list of approved calculators is shown at student.unsw.edu.au/exam-approved-calculators-and-computers.

It is your responsibility to ensure that your calculator is of an approved make and model, and to obtain an “Approved” sticker for it from the School Office or the Engineering Student Centre prior to the examination. Calculators not bearing an “Approved” sticker will not be allowed into the examination room.
Special consideration and supplementary assessment

For details of applying for special consideration and conditions for the award of supplementary assessment, see the School intranet, and the information on UNSW’s Special Consideration page.

7. Attendance

You are required to attend a minimum of 80% of all classes, including lectures, labs and seminars. It is possible to fail the course if your total absences equal to more than 20% of the required attendance. Please see the School intranet and the UNSW attendance page for more information.

8. Expected resources for students

Recommended textbooks

Other references

1. J.D. Anderson, Computational Fluid Dynamics.
6. D.C. Wilcox, Turbulence modelling for CFD.

All of the above textbooks can be found in the UNSW Library: https://www.library.unsw.edu.au/

Recommended Internet sites

www.ansys.com
www.cfd-online.com

Additional materials provided in UNSW Moodle

This course has a website on UNSW Moodle which includes:

- copies of assignments (as they are issued, in case you missed the hand-out in class);
- tutorial-style problems;
- discussion forum;
• links to any useful material discussed in class.

The discussion forum is intended for you to use with other enrolled students. The course convener and/or demonstrators will occasionally look at the forum, monitor any inappropriate content, and take note of any frequently-asked questions, but will only respond to questions on the forum at their discretion. If you want help from the convener, then direct contact is preferred.

9. Course evaluation and development

Feedback on the course is gathered periodically using various means, including the UNSW myExperience process, informal discussion in the final class for the course, and the School’s Student/Staff meetings. Your feedback is taken seriously, and continual improvements are made to the course based, in part, on such feedback.

In this course, recent improvements resulting from student feedback include the introduction of a group project to encourage collaborative learning experiences. Also, demonstrators are now required to provide more comprehensive feedback to assignment activities during lab sessions.

10. Academic honesty and plagiarism

UNSW has an ongoing commitment to fostering a culture of learning informed by academic integrity. All UNSW students have a responsibility to adhere to this principle of academic integrity. Plagiarism undermines academic integrity and is not tolerated at UNSW. **Plagiarism at UNSW is defined as using the words or ideas of others and passing them off as your own.**

Plagiarism is a type of intellectual theft. It can take many forms, from deliberate cheating to accidentally copying from a source without acknowledgement. UNSW has produced a website with a wealth of resources to support students to understand and avoid plagiarism: student.unsw.edu.au/plagiarism The Learning Centre assists students with understanding academic integrity and how not to plagiarise. They also hold workshops and can help students one-on-one.

You are also reminded that careful time management is an important part of study and one of the identified causes of plagiarism is poor time management. Students should allow sufficient time for research, drafting and the proper referencing of sources in preparing all assessment tasks.

If plagiarism is found in your work when you are in first year, your lecturer will offer you assistance to improve your academic skills. They may ask you to look at some online resources, attend the Learning Centre, or sometimes resubmit your work with the problem
fixed. However more serious instances in first year, such as stealing another student’s work or paying someone to do your work, may be investigated under the Student Misconduct Procedures.

Repeated plagiarism (even in first year), plagiarism after first year, or serious instances, may also be investigated under the Student Misconduct Procedures. The penalties under the procedures can include a reduction in marks, failing a course or for the most serious matters (like plagiarism in an honours thesis) even suspension from the university. The Student Misconduct Procedures are available here: www.gs.unsw.edu.au/policy/documents/studentmisconductprocedures.pdf

Further information on School policy and procedures in the event of plagiarism is available on the intranet.

11. Administrative matters and links

All students are expected to read and be familiar with School guidelines and polices, available on the intranet. In particular, students should be familiar with the following:

- Attendance, Participation and Class Etiquette
- UNSW Email Address
- Computing Facilities
- Assessment Matters (including guidelines for assignments, exams and special consideration)
- Academic Honesty and Plagiarism
- Student Equity and Disabilities Unit
- Health and Safety
- Student Support Services
Appendix A: Engineers Australia (EA) Competencies

Stage 1 Competencies for Professional Engineers

<table>
<thead>
<tr>
<th>Program Intended Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE1: Knowledge and Skill Base</td>
</tr>
<tr>
<td>PE1.1 Comprehensive, theory-based understanding of underpinning fundamentals</td>
</tr>
<tr>
<td>PE1.2 Conceptual understanding of underpinning maths, analysis, statistics, computing</td>
</tr>
<tr>
<td>PE1.3 In-depth understanding of specialist bodies of knowledge</td>
</tr>
<tr>
<td>PE1.4 Discernment of knowledge development and research directions</td>
</tr>
<tr>
<td>PE1.5 Knowledge of engineering design practice</td>
</tr>
<tr>
<td>PE1.6 Understanding of scope, principles, norms, accountabilities of sustainable engineering practice</td>
</tr>
<tr>
<td>PE2: Engineering Application Ability</td>
</tr>
<tr>
<td>PE2.1 Application of established engineering methods to complex problem solving</td>
</tr>
<tr>
<td>PE2.2 Fluent application of engineering techniques, tools and resources</td>
</tr>
<tr>
<td>PE2.3 Application of systematic engineering synthesis and design processes</td>
</tr>
<tr>
<td>PE2.4 Application of systematic approaches to the conduct and management of engineering projects</td>
</tr>
<tr>
<td>PE3: Professional and Personal Attributes</td>
</tr>
<tr>
<td>PE3.1 Ethical conduct and professional accountability</td>
</tr>
<tr>
<td>PE3.2 Effective oral and written communication (professional and lay domains)</td>
</tr>
<tr>
<td>PE3.3 Creative, innovative and pro-active demeanour</td>
</tr>
<tr>
<td>PE3.4 Professional use and management of information</td>
</tr>
<tr>
<td>PE3.5 Orderly management of self, and professional conduct</td>
</tr>
<tr>
<td>PE3.6 Effective team membership and team leadership</td>
</tr>
</tbody>
</table>