MTRN4010

ADVANCED AUTONOMOUS SYSTEMS
Contents

1. Staff contact details ... 2
 Contact details and consultation times for course convenor .. 2
 Contact details and consultation times for additional lecturers/demonstrators/lab staff 2
2. Important links .. 2
3. Course details .. 2
 Credit Points ... 2
 Contact hours .. 3
 Summary and Aims of the course ... 3
 Student learning outcomes ... 4
4. Teaching strategies .. 4
5. Course schedule .. 5
6. Assessment ... 6
 Assessment Overview ... 6
 Projects .. 6
 Assignments .. 7
 Submission ... 7
 Marking .. 7
 Examinations .. 8
 Calculators ... 8
 Special consideration and supplementary assessment ... 8
7. Attendance ... 8
8. Expected resources for students ... 8
9. Course evaluation and development ... 9
10. Academic honesty and plagiarism ... 9
11. Administrative matters and links .. 10
Appendix A: Engineers Australia (EA) Competencies ... 11
1. Staff contact details

Contact details and consultation times for course convenor

Name: Dr. Jose Guivant
Office: Room 510D, Building J17
Tel: (02) 9385 5693
Email: j.guivant@unsw.edu.au

The consultation time slots will be announced later.

Consultations are possible outside the set times, but a prior appointment would be preferred. Email and Moodle discussions can also be used for solving more general issues.

Contact details and consultation times for additional lecturers/demonstrators/lab staff

Name: Dr. Ngai M. Kwok
Office: Room 510C, Building J17
Tel: (02) 9385 6091
Email: nmkwok@unsw.edu.au

Consultation with Dr Kwok concerning this course will by appointment. Direct consultation is preferred; email may also be used.

Please see the course Moodle.

2. Important links

- Moodle
- UNSW Mechanical and Manufacturing Engineering
- Course Outlines
- Student intranet
- UNSW Mechanical and Manufacturing Engineering Facebook
- UNSW Handbook

3. Course details

Credit Points

This is a 6 unit-of-credit (UoC) course, which involves four (4) hours per week (h/w) of face-to-face contact.

The UNSW website states "The normal workload expectations of a student are approximately 25 hours per semester for each UoC, including class contact hours, other learning activities, preparation and time spent on all assessable work. Thus, for a full-time
enrolled student, the normal workload, averaged across the 16 weeks of teaching, study and examination periods, is about 37.5 hours per week.”

This means that you should aim to spend about 9 h/w on this course. The additional time should be spent in making sure that you understand the lecture material, completing the set assignments, further reading, and revising for any examinations.

Contact hours

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>Monday 11:00 – 13:00</td>
<td>Old Main Building 149 (K15-149)</td>
</tr>
<tr>
<td>Lab/projects</td>
<td>Please check your timetable</td>
<td>Please check your timetable</td>
</tr>
</tbody>
</table>

Please refer to your class timetable for the learning activities you are enrolled in and attend only those classes.

Summary and Aims of the course

The course is aimed at learning basic and advanced techniques necessary for the sensing and control of autonomous systems. Contents covered in this course are the theory and application of topics such as Stochastic Processes, Bayesian State Estimation (including Kalman Filter, Extended Kalman Filters), Sensor Data Fusion, Fuzzy Logic, Particle Swarm Optimization (PSO) and Neural Networks. Half of the course is lecture-based. In the other half, the students apply the concepts on real data and, at the end of the session, a real platform (UGV-Unmanned Ground Vehicle).

The following are the course objectives:

- Understanding of the general problem of Modelling and Estimation of Stochastic Dynamic Processes.
- Understanding the Implementation of stochastic Sensor Data Fusion for solving Engineering Problems.
- Using those concepts for a real application: Robot Perception and Localization.
- Understanding the theory of advanced techniques such as Fuzzy Logic, PSO and Neural Networks.
- Be able to implement simulations and real systems for the control and estimation of processes such as a mobile robotic platform.
- Enable students to work to improve problem-solving skills.
- Obtain experience working with current sensing technology in Field Robotics.

Concepts included in this course are useful for other disciplines, in research, development and industrial application.
Student learning outcomes

This course is designed to address the following learning outcomes and the corresponding Engineers Australia Stage 1 Competency Standards for Professional Engineers, as shown. The full list of Stage 1 Competency Standards may be found in Appendix A.

After successfully completing this course, students should be able to:

<table>
<thead>
<tr>
<th>Learning Outcome</th>
<th>EA Stage 1 Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Understand the general theory of Bayesian Estimation. Understand the theory</td>
<td>PE1.1</td>
</tr>
<tr>
<td>and application of the Kalman Filter (KF and EKF) for solving diverse types of</td>
<td></td>
</tr>
<tr>
<td>problems in the area of Engineering</td>
<td></td>
</tr>
<tr>
<td>2. Understand methods such as Neural Networks, Fuzzy Logic and PSO.</td>
<td>PE1.1</td>
</tr>
<tr>
<td>3. Be able to develop software for applying the theory, and actually solving</td>
<td>PE2.3</td>
</tr>
<tr>
<td>complex problems. Have experience in using state-of-the-art sensors, used in</td>
<td></td>
</tr>
<tr>
<td>Field Robotics and Autonomous Systems.</td>
<td></td>
</tr>
</tbody>
</table>

4. Teaching strategies

Teaching of this course is implemented through lectures to cover the theory, and project sessions to put those concepts in practice. All laboratory/project work is individual work, and attendance is necessary.

The provision of the learning environment in the laboratory is to facilitate the students to develop confidence in managing laboratory tasks as projects. Demonstrators in the laboratories are there to provide guidance and assistance in managing the laboratory tasks.

Examples (e.g. source code) for the projects are provided by the Lecturer, to help in the understanding and full implementation of the projects. Project complexity is incremental, to allow the student to finally complete the solution of a complex problem.
5. Course schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Loc.</th>
<th>Lecture Content</th>
<th>Suggested Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>weeks 1</td>
<td>Introduction / refreshing concepts</td>
<td>LR</td>
<td>Refreshing concepts: Statistics (Random variables, probability density functions, etc.), state space representation, matrix/vector operations. Examples in Matlab plain programming language.</td>
<td>Moodle lecture notes</td>
</tr>
<tr>
<td>weeks 1,2</td>
<td>Typical Sensors and Models</td>
<td>LR</td>
<td>Process Models for mobile platforms. Typical sensors used in our projects.</td>
<td>Moodle lecture notes</td>
</tr>
<tr>
<td>weeks 2,3</td>
<td>Estimation 1&2</td>
<td>LR</td>
<td>Study of Bayesian Estimation, Sensor Data Fusion.</td>
<td>Moodle lecture notes</td>
</tr>
<tr>
<td>week 4</td>
<td>Estimation 3</td>
<td>LR</td>
<td>Gaussian Estimators: Kalman Filter and Extended Kalman Filter (EKF)</td>
<td>Moodle lecture notes</td>
</tr>
<tr>
<td>Week 5</td>
<td>Estimation 4</td>
<td>LR</td>
<td>Examples using EKF for estimation (not just for Robotics).</td>
<td>Moodle lecture notes</td>
</tr>
<tr>
<td>week 6</td>
<td>Localization 1</td>
<td>LR</td>
<td>Applying EKF in Robotics: Solving the localization of a UGV. Fusing IMU, encoders and laser scanner sensors.</td>
<td>Moodle lecture notes</td>
</tr>
<tr>
<td>week 7</td>
<td>Localization 2</td>
<td>LR</td>
<td>Alternative approach: Applying an optimizer for solving the localization problem</td>
<td>Moodle lecture notes</td>
</tr>
<tr>
<td>week 8</td>
<td>Special Topic</td>
<td>LR</td>
<td>Case of Study: SLAM (Simultaneous Localization and Mapping) or similar problem (to be decided by students).</td>
<td>Moodle lecture notes</td>
</tr>
<tr>
<td>week 9</td>
<td>Fuzzy Logic</td>
<td>LR</td>
<td>Fuzzy systems, mobile robot motion control</td>
<td>Moodle lecture notes</td>
</tr>
<tr>
<td>week 10</td>
<td>Neural networks</td>
<td>LR</td>
<td>Neural networks, modelling of complicate autonomous system</td>
<td>Moodle lecture notes</td>
</tr>
<tr>
<td>week 11</td>
<td>Metaheuristics</td>
<td>LR</td>
<td>Metaheuristics; genetic algorithm, particle swarm optimizer</td>
<td>Moodle lecture notes</td>
</tr>
<tr>
<td>week 12</td>
<td>Intelligent Control</td>
<td>LR</td>
<td>Optimization of fuzzy control systems</td>
<td>Moodle lecture notes</td>
</tr>
<tr>
<td>week 13</td>
<td>Contingency time. Revision</td>
<td>LR</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

*Note: LR = lecture Room = Old Main Building 149 (K15-149)
6. Assessment

Assessment Overview

<table>
<thead>
<tr>
<th>Assessment task</th>
<th>Length</th>
<th>Weight</th>
<th>Learning outcomes assessed</th>
<th>Assessment criteria</th>
<th>Due date, time, and submission requirements</th>
<th>Deadline for Absolute fail</th>
<th>Marks returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projects</td>
<td>4 projects</td>
<td>50%</td>
<td>1,2,3</td>
<td>Refer to assignment specifications for exact details.</td>
<td>See details in the section about Projects</td>
<td>See details in the section about Projects</td>
<td></td>
</tr>
<tr>
<td>Final exam</td>
<td>2 hours</td>
<td>50%</td>
<td>1,2,3</td>
<td>All course content from weeks 1-12</td>
<td>Exam period, date TBC.</td>
<td>N/A</td>
<td>Upon release of final results</td>
</tr>
</tbody>
</table>

Necessary conditions, in order to pass the course:

a) The exam mark must be 50/100 or higher.
b) The total mark of the project component must be 50/100 or higher.

Projects

<table>
<thead>
<tr>
<th>Assessment task</th>
<th>Length</th>
<th>Weight</th>
<th>Learning outcomes assessed</th>
<th>Assessment criteria</th>
<th>Due date, time, and submission requirements</th>
<th>Deadline for Absolute fail</th>
<th>Marks returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 0</td>
<td>Problems</td>
<td>0%</td>
<td>Refreshing concepts.</td>
<td>No assessment</td>
<td>---</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Task 1</td>
<td>Completely operational software</td>
<td>15%</td>
<td>3</td>
<td>Refer to assignment specification for exact details (note 1).</td>
<td>Meeting with a demonstrator, week 4.</td>
<td>1 week later</td>
<td>< 10 days later</td>
</tr>
<tr>
<td>Task 2</td>
<td>Completely operational software</td>
<td>20%</td>
<td>3</td>
<td>Refer to assignment specification for exact details (note 1).</td>
<td>Meeting with a demonstrator, week 6.</td>
<td>1 week later</td>
<td>< 10 days later</td>
</tr>
<tr>
<td>Task 3</td>
<td>Completely operational software</td>
<td>40%</td>
<td>1,3</td>
<td>Refer to assignment specification for exact details (note 1)</td>
<td>Meeting with a demonstrator, week 9.</td>
<td>1 week later</td>
<td>< 10 days later</td>
</tr>
</tbody>
</table>
Task demonstrations may be preceded by a short quiz, whose result would be part of the marking scheme for the task. For each task, the students will be informed, in advance, if the demonstration of the task will include a quiz. The relevance of the quiz on the final mark of the task will be informed, in advance, to the students. The topic of the quiz will be related to the task being evaluated, on matters which the student should know for solving that task.

Assignments

Each of the four tasks (which contribute to the final mark) will be presented/demonstrated by the student, individually. All your programs and results must be explained to your demonstrator. A significant portion of the marks are the result of your demonstration of knowledge about the task, during your meeting with the demonstrator.

A short quiz (for all the students in a lab session) before the demonstration may be required by the demonstrators. In such cases, the quiz would commence 10 minutes past the nominal starting time of the lab/project session. Students who are not able to attend a demonstration session must apply for special consideration.

At the end of each demonstration, you must submit your software and report (if required) in a zipped file, via a Moodle submission site. The deadline for that submission will be known before the demonstration. Details about the format and name convention for program files and reports will be specified with the release of the tasks and projects.

Submission

Late submissions will be penalised 5 marks per calendar day (including weekends). An extension may only be granted in exceptional circumstances. Special consideration for assessment tasks must be processed through student.unsw.edu.au/special-consideration.

It is always worth submitting late assessment tasks when possible. Completion of the work, even late, may be taken into account in cases of special consideration.

Where there is no special consideration granted, the ‘deadline for absolute fail’ in the table above indicates the time after which a submitted assignment will not be marked, and will achieve a score of zero for the purpose of determining overall grade in the course.

Marking

Marking guidelines for assignment submissions will be provided at the same time as assignment details to assist with meeting assessable requirements. Submissions will be marked according to the marking guidelines provided.
Examinations

The exam’s duration is two (2) hours. It involves substantial part of the theory (presented in the lectures) and questions about the projects/tasks which were solved by the students during the session.

You must be available for all tests and examinations. Final examinations for each course are held during the University examination periods, which are June for Semester 1 and November for Semester 2.

Provisional Examination timetables are generally published on myUNSW in May for Semester 1 and September for Semester 2.

For further information on exams, please see the Exams section on the intranet.

Calculators

You will need to provide your own calculator, of a make and model approved by UNSW, for the examinations. The list of approved calculators is shown at student.unsw.edu.au/exam-approved-calculators-and-computers.

It is your responsibility to ensure that your calculator is of an approved make and model, and to obtain an “Approved” sticker for it from the School Office or the Engineering Student Centre prior to the examination. Calculators not bearing an “Approved” sticker will not be allowed into the examination room.

Special consideration and supplementary assessment

For details of applying for special consideration and conditions for the award of supplementary assessment, see the School intranet, and the information on UNSW’s Special Consideration page.

7. Attendance

You are required to attend a minimum of 80% of all classes, including lectures, labs and seminars. It is possible to fail the course if your total absences equal to more than 20% of the required attendance. Please see the School intranet and the UNSW attendance page for more information.

8. Expected resources for students

All the academic material is provided by the lecturers (lecture notes, example data, software libraries, example code, sensors and equipment).
In addition to the real-time data provided by the sensors, datasets of typical measurements are provided for allowing the students to perform playback sessions and work at home when needed.

Lecture notes and projects specifications will be available on Moodle in advance before the class.

Other Resources

Although the material taught in the course is fully covered by the provided lecture notes, some deviations are inevitable. If you wish to explore any of the lecture topics in more depth, then other resources are available and assistance may be obtained from the UNSW Library.

UNSW Library website: https://www.library.unsw.edu.au/

9. Course evaluation and development

Feedback on the course is gathered periodically using various means, including the UNSW myExperience process, informal discussion in the final class for the course, and the School’s Student/Staff meetings. Your feedback is taken seriously, and continual improvements are made to the course based, in part, on such feedback.

In this course, recent improvements resulting from student feedback include:

- Extended opening time to laboratories and computers.
- More examples using EKF in areas which are not Robotics.
- Tutors: better coverage of lab hours.

10. Academic honesty and plagiarism

UNSW has an ongoing commitment to fostering a culture of learning informed by academic integrity. All UNSW students have a responsibility to adhere to this principle of academic integrity. Plagiarism undermines academic integrity and is not tolerated at UNSW. Plagiarism at UNSW is defined as using the words or ideas of others and passing them off as your own.

Plagiarism is a type of intellectual theft. It can take many forms, from deliberate cheating to accidentally copying from a source without acknowledgement. UNSW has produced a website with a wealth of resources to support students to understand and avoid plagiarism: student.unsw.edu.au/plagiarism The Learning Centre assists students with understanding academic integrity and how not to plagiarise. They also hold workshops and can help students one-on-one.

You are also reminded that careful time management is an important part of study and one of the identified causes of plagiarism is poor time management. Students should allow
sufficient time for research, drafting and the proper referencing of sources in preparing all assessment tasks.

If plagiarism is found in your work when you are in first year, your lecturer will offer you assistance to improve your academic skills. They may ask you to look at some online resources, attend the Learning Centre, or sometimes resubmit your work with the problem fixed. However more serious instances in first year, such as stealing another student’s work or paying someone to do your work, may be investigated under the Student Misconduct Procedures.

Repeated plagiarism (even in first year), plagiarism after first year, or serious instances, may also be investigated under the Student Misconduct Procedures. The penalties under the procedures can include a reduction in marks, failing a course or for the most serious matters (like plagiarism in an honours thesis) even suspension from the university. The Student Misconduct Procedures are available here: www.gs.unsw.edu.au/policy/documents/studentmisconductprocedures.pdf

Further information on School policy and procedures in the event of plagiarism is available on the intranet.

11. Administrative matters and links

All students are expected to read and be familiar with School guidelines and polices, available on the intranet. In particular, students should be familiar with the following:

- Attendance, Participation and Class Etiquette
- UNSW Email Address
- Computing Facilities
- Assessment Matters (including guidelines for assignments, exams and special consideration)
- Academic Honesty and Plagiarism
- Student Equity and Disabilities Unit
- Health and Safety
- Student Support Services

Jose Guivant
1st February 2018
Appendix A: Engineers Australia (EA) Competencies

Stage 1 Competencies for Professional Engineers

<table>
<thead>
<tr>
<th>Program Intended Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE1: Knowledge and Skill Base</td>
</tr>
<tr>
<td>PE1.1 Comprehensive, theory-based understanding of underpinning fundamentals</td>
</tr>
<tr>
<td>PE1.2 Conceptual understanding of underpinning maths, analysis, statistics, computing</td>
</tr>
<tr>
<td>PE1.3 In-depth understanding of specialist bodies of knowledge</td>
</tr>
<tr>
<td>PE1.4 Discernment of knowledge development and research directions</td>
</tr>
<tr>
<td>PE1.5 Knowledge of engineering design practice</td>
</tr>
<tr>
<td>PE1.6 Understanding of scope, principles, norms, accountabilities of sustainable engineering practice</td>
</tr>
<tr>
<td>PE2: Engineering Application Ability</td>
</tr>
<tr>
<td>PE2.1 Application of established engineering methods to complex problem solving</td>
</tr>
<tr>
<td>PE2.2 Fluent application of engineering techniques, tools and resources</td>
</tr>
<tr>
<td>PE2.3 Application of systematic engineering synthesis and design processes</td>
</tr>
<tr>
<td>PE2.4 Application of systematic approaches to the conduct and management of engineering projects</td>
</tr>
<tr>
<td>PE3: Professional and Personal Attributes</td>
</tr>
<tr>
<td>PE3.1 Ethical conduct and professional accountability</td>
</tr>
<tr>
<td>PE3.2 Effective oral and written communication (professional and lay domains)</td>
</tr>
<tr>
<td>PE3.3 Creative, innovative and pro-active demeanour</td>
</tr>
<tr>
<td>PE3.4 Professional use and management of information</td>
</tr>
<tr>
<td>PE3.5 Orderly management of self, and professional conduct</td>
</tr>
<tr>
<td>PE3.6 Effective team membership and team leadership</td>
</tr>
</tbody>
</table>