1. Staff contact details

Contact details and consultation times for course convenors

Name: Professor Guan Heng Yeoh
Office Location: Room 401B, J17
Tel: (02) 9385 4099
Fax: (02) 9663 1222
Email: g.yeoh@unsw.edu.au
Consultation times: Thursday 2-3pm
Communication preference: Email

Name: Dr Anthony Chun Yin Yuen
Office Location: Room 401E, J17
Tel: (02) 9385 4763
Fax: (02) 9663 1222
Email: c.y.yuen@unsw.edu.au
Consultation times: Wednesday 2-3pm
Communication preference: Email

Contact details and consultation times for additional lecturers/demonstrators/lab staff

Name: Dr Victoria Timchenko
Office Location: Room 401C, J17
Tel: (02) 9385 4148
Fax: (02) 9663 1222
Email: v.timchenko@unsw.edu.au
Consultation times: Thursday 2-3pm
Communication preference: Email

Name: Cheng Wang – Head demonstrator
Office Location: Room 401, J17
Tel: (02) 9385 4763
Fax: (02) 9663 1222
Email: c.wang@unsw.edu.au
Consultation times: Friday 2-3pm
Communication preference: Email

For more information, please see the course Moodle.
2. Important links

- Moodle
- Lab Access
- Computing Facilities
- Student Resources
- Course Outlines
- Engineering Student Support Services Centre

3. Course details

Credit points

This is a 6 unit-of-credit (UoC) course and involves 3.5 hours per week (h/w) of face-to-face contact.

Contact hours

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures (Web stream)</td>
<td>Tuesday 12noon – 1:30pm</td>
<td>Webster Theatre B</td>
</tr>
<tr>
<td>Lab</td>
<td>Tuesday 2pm – 4pm</td>
<td>Ainsworth 203</td>
</tr>
<tr>
<td></td>
<td>Tuesday 2pm – 4pm</td>
<td>Ainsworth 204</td>
</tr>
<tr>
<td></td>
<td>Tuesday 4pm – 6pm</td>
<td>Ainsworth 204</td>
</tr>
</tbody>
</table>

Please refer to your class timetable for the learning activities you are enrolled in and attend only those classes.

Summary and Aims of the course

This course will focus on the terminology, principles and methods of CFD – Computational Fluid Dynamics.

CFD can be applied in many areas of engineering, including aerodynamics, hydrodynamics, air-conditioning and minerals processing, and you will find relevance towards many other courses you are currently taking.

The aims of the course are to:

- Place CFD in the context of a useful design tool for industry and a vital research tool for thermos-fluid research across many disciplines;
- Familiarize students with the basic steps and terminology associated with CFD. This includes developing students’ understanding of the conservation laws applied to fluid motion and heat transfer and basic computational methods including explicit, implicit methods, discretisation schemes and stability analysis;
- Develop practical expertise in solving CFD problems with a commercial CFD code, ANSYS CFX; and
- Develop an awareness of the power and limitations of CFD.

This course builds on knowledge gained in other courses such as Fluid Mechanics, Thermodynamics, and Numerical Methods.

Student learning outcomes

This course is designed to address the learning outcomes below and the corresponding Engineers Australia Stage 1 Competency Standards for Professional Engineers as shown. The full list of Stage 1 Competency Standards may be found in Appendix A.

After successfully completing this course, you should be able to:

<table>
<thead>
<tr>
<th>Learning Outcome</th>
<th>EA Stage 1 Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. An underlying understanding of the theoretical basis of CFD</td>
<td>PE1.1, PE1.2, PE1.4</td>
</tr>
<tr>
<td>2. The ability to develop a CFD model for "real world" engineering problems</td>
<td>PE2.1, PE2.2</td>
</tr>
<tr>
<td>3. The technical ability to address complex problems using CFD with the specific focus on developing practical skills in using a commercial CFD package, ANSYS CFX</td>
<td>PE1.3, PE1.5</td>
</tr>
<tr>
<td>4. The ability to interpret computational results and to write a report conveying the result of the computational analysis</td>
<td>PE3.1, PE3.2, PE3.3</td>
</tr>
</tbody>
</table>

4. Teaching strategies

Lectures in the course are designed to cover the terminology and core concepts and theories in CFD. They do not simply reiterate the texts, but build on the lecture topics using examples taken directly from industry to show how the theory is applied in practice and the details of when, where and how it should be applied. The WEB stream version of the course will also be available. This provides students with the opportunity to learn the lecture content online interactively in their own time.

Lab sessions are designed to provide you with feedback and discussion on the assignments, and to investigate problem areas in greater depth to ensure that you understand the application and can avoid making the same mistake again.
5. Course schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecturer</th>
<th>Topic</th>
<th>Work during laboratory session</th>
<th>Assignment Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GHY</td>
<td>Introduction to CFD and some examples of CFD</td>
<td>• Backward facing step exercise • Problem setup</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GHY</td>
<td>• Introduction to ANSYS CFX and Fluent • Defining a CFD problem • Creating and/or Importing Geometry in Design Modeler</td>
<td>• Lab work on creating geometry and meshing • Backward facing step exercise: Characterization of boundary conditions</td>
<td>Due: Group allocation questionnaire</td>
</tr>
<tr>
<td>3</td>
<td>AY</td>
<td>Mass and momentum conservation and Navier-Stokes equations</td>
<td>• Lab work on creating geometry and meshing • Heat exchanger exercise: Meshes • Discussions of group and major project topics</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>AY</td>
<td>Kinematic properties of fluids, dynamic similarity and energy conservation</td>
<td>• Lab work on conservation laws (T1) • Discussions of group and major project topics</td>
<td>Due: T1: conservation laws</td>
</tr>
<tr>
<td>5</td>
<td>GHY</td>
<td>Initial and boundary conditions: practical guidelines</td>
<td>• Lab work on conservation laws (T1) • Backward facing step exercise: Characterization of boundary conditions • Heat exchanger exercise: Characterisation of boundary conditions</td>
<td>Feedback: T1: conservation laws</td>
</tr>
<tr>
<td>6</td>
<td>GHY</td>
<td>Turbulence: basics and introduction</td>
<td>• Backward facing step exercise: Convergence and Discretisation, Turbulence models, T2 work</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>GHY</td>
<td>Turbulence: applications of models</td>
<td>• Group and major project work, T2 work</td>
<td>Due: T2: turbulence</td>
</tr>
<tr>
<td>8</td>
<td>AY</td>
<td>Computational methods – discretisation</td>
<td>• Group and major project work • Computational method online tutorial</td>
<td>Due: Group project report</td>
</tr>
<tr>
<td>9</td>
<td>AY</td>
<td>Solution Procedures</td>
<td>• Group and major project work</td>
<td>Feedback Group project report</td>
</tr>
<tr>
<td>10</td>
<td>AY</td>
<td>Post processing – analysis of results. Validation and verification</td>
<td>• Major project work</td>
<td>Due: Individual project report</td>
</tr>
<tr>
<td>11</td>
<td>GHY, AY</td>
<td>Revision and Consultation</td>
<td>• Major project work</td>
<td>Feedback Individual project report</td>
</tr>
</tbody>
</table>
Assessment

Assessment overview

You will be assessed by way of 2 sets of tutorial-style problems, one group project and one individual project and a two-hour examination at the end of the session. Details of each assessment component, the marks assigned to it, the criteria by which marks will be assigned, and the dates of submission are given below.

<table>
<thead>
<tr>
<th>Assessment task</th>
<th>Group Project?</th>
<th>If Group, number of Students per group</th>
<th>Length</th>
<th>Weight</th>
<th>Learning outcomes assessed</th>
<th>Assessment criteria</th>
<th>Due date, time, and submission requirements</th>
<th>Deadline for absolute fail</th>
<th>Marks returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial-style problems</td>
<td>No</td>
<td>N/A</td>
<td>2-3 pages</td>
<td>10% (2x 5% each)</td>
<td>1 and 4</td>
<td>Understanding of lecture material</td>
<td>4 pm Friday, Week 4, Week 7 via Moodle</td>
<td>Same as assignment deadline</td>
<td>1 week after due date</td>
</tr>
<tr>
<td>Group Project</td>
<td>Yes</td>
<td>5</td>
<td>15 pages</td>
<td>20%</td>
<td>2, 3 and 4</td>
<td>See below</td>
<td>4 pm Friday, Week 8 via Moodle</td>
<td>4 pm Monday, Week 9</td>
<td>1 weeks after due date</td>
</tr>
<tr>
<td>Individual Project</td>
<td>No</td>
<td>N/A</td>
<td>15 pages</td>
<td>20%</td>
<td>2, 3 and 4</td>
<td>See below</td>
<td>4 pm Friday, Week 10 via Moodle</td>
<td>4 pm Wednesday, Week 11</td>
<td>1 weeks after due date</td>
</tr>
<tr>
<td>Final exam</td>
<td>No</td>
<td>N/A</td>
<td>2 hours</td>
<td>50%</td>
<td>1</td>
<td>All course content from weeks 1-10</td>
<td>Exam period, date TBC</td>
<td>N/A</td>
<td>During exam period</td>
</tr>
</tbody>
</table>
Assignments

Tutorial-style problems

The short assignments containing 2 sets of tutorial-style problems (T1 and T2) are listed in the Course Schedule. They will involve theoretical work and calculations related to the Course materials. Assignments will be available on the Moodle website.

Group project

The group project involves a complete CFD analysis, from the initial concept through to CAD, meshing, pre-processing, solving, and post-processing the results. The project description will be available on Moodle.

In Week 2, students need to complete a Moodle questionnaire for group allocation purposes. The groups and allocated project topics will be announced in Week 3.

The report to be submitted will be a technical report in the style of a journal article or industrial project report for a client familiar with CFD; a template will be provided to you which will also contain a structured marking criteria. The report will involve you writing an abstract/executive summary, and you will be required to conduct a short review of some similar CFD you are able to find in relevant journal papers. Following this, you will write a discussion of your chosen numerical method and assumptions, and then sections relating to mesh convergence, turbulence modelling, and presentation of key results – these reflect the topics which will be covered in depth in the lectures and labs and comprise the typical structure of a research report.

Individual project

The individual project focuses on assessing the individual skills in CFD analysis, in particular the capability of using the CFD simulation data to describe the physical behaviors involved in the flow. The subject of the CFD investigation will be the selection from one of the three set problems provided in Moodle.

The report of the individual major project should be of similar quality as the group project report, but is to be written individually. The report is due at 4pm on Friday, Week 10. Additional details may be found in the template of the Individual project on Moodle.

Presentation

All submissions are expected to be neat and clearly set out. Your results are the pinnacle of all your hard work and should be treated with due respect. Presenting results clearly gives the marker the best chance of understanding your method; even if the numerical results are incorrect.

Submission

Work submitted late without an approved extension by the course coordinator or delegated
authority is subject to a late penalty of 20 percent (20%) of the maximum mark possible for that assessment item, per calendar day.

The late penalty is applied per calendar day (including weekends and public holidays) that the assessment is overdue. There is no pro-rata of the late penalty for submissions made part way through a day.

Work submitted after the ‘deadline for absolute fail’ is not accepted and a mark of zero will be awarded for that assessment item.

For some assessment items, a late penalty may not be appropriate. These are clearly indicated in the course outline, and such assessments receive a mark of zero if not completed by the specified date. Examples include:

a. Weekly online tests or laboratory work worth a small proportion of the subject mark, or
b. Online quizzes where answers are released to students on completion, or
c. Professional assessment tasks, where the intention is to create an authentic assessment that has an absolute submission date, or
d. Pass/Fail assessment tasks.

Marking

Marking guidelines for assignment submissions will be provided at the same time as assignment details to assist with meeting assessable requirements. Submissions will be marked according to the marking guidelines provided.

Examinations

There will be a two-hour examination at the end of the semester.

You must be available for all tests and examinations. Final examinations for each course are held during the University examination periods: February for Summer Term, May for T1, August for T2, and November/December for T3.

Please visit myUNSW for Provisional Examination timetable publish dates.

For further information on exams, please see the Exams webpage.

Calculators

You will need to provide your own calculator, of a make and model approved by UNSW, for the examinations. The list of approved calculators is shown at student.unsw.edu.au/exam-approved-calculators-and-computers

It is your responsibility to ensure that your calculator is of an approved make and model, and to obtain an “Approved” sticker for it from the School Office or the Engineering Student Centre prior to the examination. Calculators not bearing an “Approved” sticker will not be allowed into the examination room.
Special consideration and supplementary assessment

If you have experienced an illness or misadventure beyond your control that has interfered with your assessment performance, you are eligible to apply for Special Consideration. For details of applying for Special Consideration and conditions for the award of supplementary assessment, please see the information on UNSW’s Special Consideration page.

7. Expected resources for students

Recommended textbooks

Other references

1. J.D. Anderson, Computational Fluid Dynamics.
6. D.C. Wilcox, Turbulence modelling for CFD.

All of the above textbooks can be found in the UNSW Library: https://www.library.unsw.edu.au/

Recommended Internet sites

www.ansys.com
www.cfd-online.com

Additional materials provided in UNSW Moodle

This course has a website on UNSW Moodle which includes:

- copies of assignments (as they are issued, in case you missed the hand-out in class);
- tutorial-style problems;
- discussion forum;
- links to any useful material discussed in class.

The discussion forum is intended for you to use with other enrolled students. The course convenor and/or demonstrators will occasionally look at the forum, monitor any inappropriate content, and take note of any frequently-asked questions, but will only respond to questions on the forum at their discretion. If you want help from the convenor, then direct contact is preferred.
8. Course evaluation and development

Feedback on the course is gathered periodically using various means, including the UNSW myExperience process, informal discussion in the final class for the course, and the School’s Student/Staff meetings. Your feedback is taken seriously, and continual improvements are made to the course based, in part, on such feedback.

In this course, recent improvements resulting from student feedback include the introduction of a group project to encourage collaborative learning experiences. Also, demonstrators are now required to provide more comprehensive feedback to assignment activities during lab sessions.

9. Academic honesty and plagiarism

UNSW has an ongoing commitment to fostering a culture of learning informed by academic integrity. All UNSW students have a responsibility to adhere to this principle of academic integrity. Plagiarism undermines academic integrity and is not tolerated at UNSW. Plagiarism at UNSW is defined as using the words or ideas of others and passing them off as your own.

Plagiarism is a type of intellectual theft. It can take many forms, from deliberate cheating to accidentally copying from a source without acknowledgement. UNSW has produced a website with a wealth of resources to support students to understand and avoid plagiarism, visit: student.unsw.edu.au/plagiarism. The Learning Centre assists students with understanding academic integrity and how not to plagiarise. They also hold workshops and can help students one-on-one.

You are also reminded that careful time management is an important part of study and one of the identified causes of plagiarism is poor time management. Students should allow sufficient time for research, drafting and the proper referencing of sources in preparing all assessment tasks.

If plagiarism is found in your work when you are in first year, your lecturer will offer you assistance to improve your academic skills. They may ask you to look at some online resources, attend the Learning Centre, or sometimes resubmit your work with the problem fixed. However more serious instances in first year, such as stealing another student’s work or paying someone to do your work, may be investigated under the Student Misconduct Procedures.

Repeated plagiarism (even in first year), plagiarism after first year, or serious instances, may also be investigated under the Student Misconduct Procedures. The penalties under the procedures can include a reduction in marks, failing a course or for the most serious matters (like plagiarism in an honours thesis) even suspension from the university. The Student Misconduct Procedures are available here: www.gs.unsw.edu.au/policy/documents/studentmisconductprocedures.pdf
10. Administrative matters and links

All students are expected to read and be familiar with School guidelines and polices, available on the intranet. In particular, students should be familiar with the following:

- Attendance
- UNSW Email Address
- Computing Facilities
- Special Consideration
- Exams
- Approved Calculators
- Academic Honesty and Plagiarism
- Student Equity and Disabilities Unit
- Health and Safety
- Lab Access
- Makerspace
- UNSW Timetable
- UNSW Handbook
- UNSW Mechanical and Manufacturing Engineering
Appendix A: Engineers Australia (EA) Competencies

Stage 1 Competencies for Professional Engineers

<table>
<thead>
<tr>
<th>Program Intended Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE1: Knowledge and Skill Base</td>
</tr>
<tr>
<td>PE1.1 Comprehensive, theory-based understanding of underpinning fundamentals</td>
</tr>
<tr>
<td>PE1.2 Conceptual understanding of underpinning maths, analysis, statistics, computing</td>
</tr>
<tr>
<td>PE1.3 In-depth understanding of specialist bodies of knowledge</td>
</tr>
<tr>
<td>PE1.4 Discernment of knowledge development and research directions</td>
</tr>
<tr>
<td>PE1.5 Knowledge of engineering design practice</td>
</tr>
<tr>
<td>PE1.6 Understanding of scope, principles, norms, accountabilities of sustainable engineering practice</td>
</tr>
<tr>
<td>PE2: Engineering Application Ability</td>
</tr>
<tr>
<td>PE2.1 Application of established engineering methods to complex problem solving</td>
</tr>
<tr>
<td>PE2.2 Fluent application of engineering techniques, tools and resources</td>
</tr>
<tr>
<td>PE2.3 Application of systematic engineering synthesis and design processes</td>
</tr>
<tr>
<td>PE2.4 Application of systematic approaches to the conduct and management of engineering projects</td>
</tr>
<tr>
<td>PE3: Professional and Personal Attributes</td>
</tr>
<tr>
<td>PE3.1 Ethical conduct and professional accountability</td>
</tr>
<tr>
<td>PE3.2 Effective oral and written communication (professional and lay domains)</td>
</tr>
<tr>
<td>PE3.3 Creative, innovative and pro-active demeanour</td>
</tr>
<tr>
<td>PE3.4 Professional use and management of information</td>
</tr>
<tr>
<td>PE3.5 Orderly management of self, and professional conduct</td>
</tr>
<tr>
<td>PE3.6 Effective team membership and team leadership</td>
</tr>
</tbody>
</table>