MMAN4400

ENGINEERING MANAGEMENT
Contents

1. Staff contact details ... 2
 Contact details and consultation times for course convenor 2
 Contact details and consultation times for additional lecturers/demonstrators/lab staff 2
2. Important links .. 2
3. Course details ... 2
 Credit Points ... 2
 Contact hours .. 3
 Summary and Aims of the course .. 3
 Student learning outcomes ... 4
4. Teaching strategies ... 5
5. Course schedule ... 5
6. Assessment .. 7
 Assessment overview ... 7
 Assignments .. 8
 Written reports ... 8
 Presentation .. 8
 Submission ... 8
 Marking .. 9
 Other assessments ... 9
 Examinations ... 9
 Online Quiz .. 9
 Calculators .. 9
 Special consideration and supplementary assessment 10
7. Expected resources for students .. 10
 Textbooks .. 10
8. Course evaluation and development ... 10
9. Academic honesty and plagiarism .. 10
10. Administrative matters and links .. 11
Appendix A: Engineers Australia (EA) Competencies 13
1. Staff contact details

Contact details and consultation times for course convenor

Name: Dr Erik van Voorthuysen
Office Location: Ainsworth Building (J17), Room 507
Tel: (02) 9385 4147
Email: erikv@unsw.edu.au

Consultation concerning this course is available immediately after the classes. Face-to-face consultation is preferred.

Contact details and consultation times for additional lecturers/demonstrators/lab staff

Name: Dr Ronald Chan
Tel: (02) 9385 1535
Office Location: Ainsworth Building (J17), Room 507
Email: r.chan@unsw.edu.au

Name: Oscar Boyd-Jones
Office location: Ainsworth Building (J17), Room 507
Email: o.boydones@unsw.edu.au

Consultation concerning this course is available immediately after the classes. Face-to-face consultation is preferred.

Please see the course Moodle.

2. Important links

- Moodle
- UNSW Mechanical and Manufacturing Engineering
- Course Outlines
- Student intranet
- UNSW Mechanical and Manufacturing Engineering Facebook
- UNSW Handbook

3. Course details

Credit Points

This is a 6 unit-of-credit (UoC) course and involves 4 hours per week (h/w) of face-to-face contact.
Contact hours

<table>
<thead>
<tr>
<th></th>
<th>Day</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>Tuesday</td>
<td>14:00 – 16:00</td>
<td>Science Theatre</td>
</tr>
<tr>
<td>Demonstrations</td>
<td>Tuesday</td>
<td>16:00 – 17:30</td>
<td>Science Theatre</td>
</tr>
<tr>
<td>Tutorial-Laboratories</td>
<td>Wednesdays</td>
<td>See timetable</td>
<td>Ainsworth 203 or 204</td>
</tr>
</tbody>
</table>

Please refer to your class timetable for the learning activities you are enrolled in and attend only those classes.

Summary and Aims of the course

MMAN4400 Engineering Management presents four subject areas, considered to be critical in terms of managing and leading engineering operations. They are:

- Issue analysis and decision making
- Investment analysis and engineering economy
- Costing and operations analysis
- Quality management, including design

Within each subject area the course will cover many conceptual and analytical techniques, all supporting fact- and data-based analysis and decision making with the aim of improved product and process performance, economy and sustainability. The course consists of lectures, demonstration sessions and assignment work. There will be three quizzes and a major case study. There will be no final exam.

Considering the diverse nature of subject areas, there really is no single, suitable textbook available that covers all these areas and therefore a custom textbook, consisting of a compilation of outstanding chapters from three different textbooks has been created with the assistance of the McGraw-Hill company. Our campus bookstore will have this book for you to purchase. It is important you do so, as this book will be an excellent reference for you for years to come. Additional lecture notes are also posted on Moodle.

This course is designed to help you to learn how to manage the operations in organizations and also to build a business or commercial case for making engineering related decisions, such as investment in plant, equipment and processes. Although the main emphasis will be on product and process, consideration will also be given to designing engineering services. The course offers a broad managerial perspective emphasizing the strategic impact of operations decisions and the interfaces between operations and the other functional areas of organizations, including of course, finance.

This course encompasses the key elements of operations management and investment analysis and pulls them together in a coherent format that allows you to understand the ‘big picture’ as well as ‘the specific details’. It is aimed at integrating the knowledge gained from the different engineering subjects you have studied into a framework and process that allows you to implement your solutions and ideas in a commercial environment.
Engineers have traditionally played an important role in management, largely because design and technology were the main key factors for success in product and process design, but also the fact that our engineering degree gave us outstanding analytical skills to solve a multitude of problems. This really hasn’t changed, but in an increasingly complex world, successful organizations – public, private or governmental – need managers with increasingly broad and diverse skills, especially in finance, law, risk and quality management, and customer relations. And more to the point, organizations need leaders at every level, with the ability to make carefully considered and innovative long-term strategic decisions. It is the purpose of MMAN4400 to equip you with enough knowledge and information to become a global manager, indeed a leader, with the ability to apply analytical methods and quality processes to create short and long-term value for your organization, your customers, and the community, in other words, all stakeholders.

Some of you will follow a ‘traditional’ engineering career, whereas others will branch out into very different fields, including consulting, banking, insurance, service industries, transport and so on. It is the aim of this course to prepare you for any of these and to train your mind to think strategically and systematically, integrating technical, commercial, financial and managerial concepts. We will also have some guest lecturers from industry and the professions. They will speak on a range of current and important issues, and be happy to engage you in discussion.

The textbooks, notes, case studies and UNSW Moodle postings support the lectures and demonstration sessions, but they are not intended to be a substitute for attending classes. You are expected to cover all the materials assigned for both lectures and demonstration sessions.

Student learning outcomes

This course is designed to address the learning outcomes below and the corresponding Engineers Australia Stage 1 Competency Standards for Professional Engineers as shown. The full list of Stage 1 Competency Standards may be found in Appendix A.

After successfully completing this course, you should be able to:

<table>
<thead>
<tr>
<th>Learning Outcome</th>
<th>EA Stage 1 Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. State what an organisation needs to do to remain competitive in today’s environment.</td>
<td>PE3.1, PE3.2, PE3.6</td>
</tr>
<tr>
<td>2. Perform investment and feasibility analyses.</td>
<td>PE1.1, PE1.2, PE2.1</td>
</tr>
<tr>
<td>3. Be able to determine whether a process is capable of producing a product or service to specifications.</td>
<td>PE1.1, PE1.2, PE1.6</td>
</tr>
<tr>
<td>4. To be able to understand the role that the operations management function plays in international business and how the operations function can play a strategic role in improving the global competitiveness of the organisation.</td>
<td>PE3.1, PE3.4, PE3.6</td>
</tr>
</tbody>
</table>
4. Teaching strategies

Lectures, demonstrations and assessments in the course are designed to cover the core knowledge areas in Engineering Management. They do not simply reiterate the texts, but build on the lecture topics using examples and cases taken directly from industry to show how the theory is applied in practice and the details of when, where and how it should be applied.

Lectures and demonstrations are designed to develop several graduate attributes by creating an environment where information sharing, discussions, teamwork, communication, task completions and project role playing will take place. Since each of you may have come from a different engineering stream, your experiences are drawn on to illustrate various aspects of cases covered, and this helps to increase motivation and engagement.

5. Course schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture Content (Science Theatre) 14:00 – 16:00</th>
<th>Suggested Readings</th>
<th>Demonstration (Science Theatre) 16:00 – 17:30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Issue analysis Part I – Issue Analysis Framework, Operations, Processes, Systems and Capacity</td>
<td>Chapters 1, 2, 3, 4, and Lecture notes and video on issue analysis</td>
<td>No demonstration in Week 1</td>
</tr>
<tr>
<td>Week 2</td>
<td>Issue analysis Part II – Strategy, Little’s law and Cost Estimation</td>
<td>Chapters 1, 2, 3, 4, 5 and Lecture notes</td>
<td>Case study discussion</td>
</tr>
<tr>
<td>Week 3</td>
<td>Engineering economy Part I – Foundations of engineering economy</td>
<td>Chapter 9, 10 and Lecture notes</td>
<td>Quiz 1 (in-class)</td>
</tr>
<tr>
<td>Week 4</td>
<td>Engineering economy Part II – Interest rates, present worth</td>
<td>Chapter 9, 10, 11, 12, 13 and Lecture notes</td>
<td>Questions on interest rate, PW, AW, FW Case study discussion</td>
</tr>
<tr>
<td>Week 5</td>
<td>Engineering economy Part III – Annual worth and future worth</td>
<td>Chapter 9, 10, 11, 12, 13 and Lecture notes</td>
<td>Questions on IRR, breakeven, sensitivity and payback Case study discussion</td>
</tr>
<tr>
<td>Date</td>
<td>Lecture Content (Science Theatre)</td>
<td>Suggested Readings</td>
<td>Demonstration (Science Theatre)</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------------</td>
<td>--------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Week 6</td>
<td>Engineering economy Part IV – Rate of return analysis, breakeven, sensitivity and payback analysis</td>
<td>Chapter 14, 15, 16, 17, 18 and Lecture notes</td>
<td>Quiz 2 (in-class)</td>
</tr>
</tbody>
</table>
| Week 7 | Quality management, Basic 7 tools | Chapter 8 and Lecture notes | Questions on the Basic 7 tools
Case study discussion |
| Week 8 | Statistical process control – process variables, process attributes, capability analysis | Chapter 8 and Lecture notes | Questions on statistical process control
Case study discussion |
| Week 9 | Six Sigma, Lean, Agile, JIT, Process Improvement and Reengineering | Chapter 8, 21 and Lecture notes | Quiz 3 (in-class) |
| Week 10 | Introduction to Accounting, Linking Operations with Finance | Chapter 19 and Lecture notes | Case study discussion and assignment support |
6. Assessment

Assessment overview

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Length</th>
<th>Weight</th>
<th>Learning outcomes assessed</th>
<th>Assessment criteria</th>
<th>Due date and submission requirements</th>
<th>Deadline for absolute fail</th>
<th>Marks returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online Quiz x 3</td>
<td>Multiple choice and short answer questions</td>
<td>45%</td>
<td>1, 2, 3 and 4</td>
<td>• Quiz 1: Lecture + Tutorial Material Week 1-4
• Quiz 2: Lecture + Tutorial Material Week 5-8
• Quiz 3: Lecture + Tutorial Material Week 8-12</td>
<td>Week 3, 6 and 9</td>
<td>End of Week 3, 6 and 9</td>
<td>Immediately after the quiz is closed</td>
</tr>
<tr>
<td>Assignment progress evaluation</td>
<td>500 words per team</td>
<td>20%</td>
<td>1 and 2</td>
<td>Performance outcomes from business simulation study</td>
<td>Week 8, 5pm on Moodle</td>
<td>1 week after the due date</td>
<td>Within 2 weeks after submission</td>
</tr>
<tr>
<td>Group assignment</td>
<td>2000 words per team</td>
<td>35%</td>
<td>1, 2, 3 and 4</td>
<td>See below</td>
<td>Week 10, 5pm on Moodle</td>
<td>1 week after the due date</td>
<td>Upon release of final results</td>
</tr>
</tbody>
</table>
Assignments

The assignment will be posted on Moodle and a reminder announcement will be made about due dates for the assignments. The assignments support the learning outcomes by incorporating an appropriate mix of activities such as issue analysis, fact-based data analysis that support the design of appropriate solutions and strategies. The assignments also support collaborative team work and integration of different ideas and components into an overall coherent quality management strategy.

The following criteria will be used to grade assignments:

Written reports

- Analysis and evaluation of assignments by integrating knowledge gathered in lectures, demonstration sessions and textbook
- Sentences in clear and plain English—this includes correct grammar, spelling and punctuation
- Correct referencing in accordance with the prescribed citation and style guide
- Appropriateness of analytical techniques used
- Accuracy of numerical answers
- All working shown
- Use of diagrams, where appropriate, to support or illustrate the calculations
- Use of graphs, where appropriate, to support or illustrate the calculations
- Use of tables, where appropriate, to support or shorten the calculations
- Neatness

All submissions are expected to be neat and clearly set out. Your results are the pinnacle of all your hard work and should be treated with due respect. Presenting results clearly gives the marker the best chance of understanding your method; even if the numerical results are incorrect.

Presentation

All submissions are expected to be neat and clearly set out. Your results are the pinnacle of all your hard work and should be treated with due respect. Presenting results clearly gives the marker the best chance of understanding your method; even if the numerical results are incorrect.

Submission

Work submitted late without an approved extension by the course coordinator or delegated authority is subject to a late penalty of 20 per cent (20%) of the maximum mark possible for that assessment item, per calendar day.

The late penalty is applied per calendar day (including weekends and public holidays) that the assessment is overdue. There is no pro-rata of the late penalty for submissions made part way through a day.
Work submitted after the ‘deadline for absolute fail’ is not accepted and a mark of zero will be awarded for that assessment item.

For some assessment items, a late penalty may not be appropriate. These are clearly indicated in the course outline, and such assessments receive a mark of zero if not completed by the specified date. Examples include:

a. Weekly online tests or laboratory work worth a small proportion of the subject mark, or
b. Online quizzes where answers are released to students on completion, or
c. Professional assessment tasks, where the intention is to create an authentic assessment that has an absolute submission date, or
d. Pass/Fail assessment tasks.

Marking

Marking guidelines for assignment submissions will be provided at the same time as assignment details to assist with meeting assessable requirements. Submissions will be marked according to the marking guidelines provided.

Other assessments

Additional assessments may be given in class to reinforce topics and provide early feedback. These assessments will not contribute to the final mark.

Examinations

There is no final exam in this course.

Online Quiz

Three quizzes (quiz 1, 2 and 3) will be conducted online via Moodle in a supervised classroom location. This location will be posted on Moodle before each quiz. The format of the quiz is like those that are done on paper, which consists of multiple-choice questions, calculations and short answer questions. Each student gets ONE attempt to complete the quiz within a set time limit. The feedback of the quiz will be provided after the quiz is closed. Note that the quiz questions are randomly drawn from a question bank with similar theme and difficulty, numerical questions may appear with random input numbers, so students will not expect to get the exact same question. Students are expected to complete the quiz individually.

You must be available for all tests and examinations.

Calculators

You will need to provide your own calculator of a make and model approved by UNSW for the examinations. The list of approved calculators is available at student.unsw.edu.au/exam-approved-calculators-and-computers
It is your responsibility to ensure that your calculator is of an approved make and model, and to obtain an "Approved" sticker for it from the Engineering Student Supper Services Centre prior to the examination. Calculators not bearing an "Approved" sticker will not be allowed into the examination room.

Special consideration and supplementary assessment

If you have experienced an illness or misadventure beyond your control that will interfere with your assessment performance, you are eligible to apply for Special Consideration prior to submitting an assessment or sitting an exam.

Please note that UNSW now has a Fit to Sit / Submit rule, which means that if you sit an exam or submit a piece of assessment, you are declaring yourself fit enough to do so and cannot later apply for Special Consideration.

For details of applying for Special Consideration and conditions for the award of supplementary assessment, please see the information on UNSW's Special Consideration page.

7. Expected resources for students

Lecture notes for all topics will be posted on Moodle. For all e-Books and reference books please visit the UNSW Library website: https://www.library.unsw.edu.au/

Textbooks

The prescribed textbook for this course is:

You can purchase the textbook from UNSW bookshop. Alternatively, you can purchase the eBook version (at a lower price) directly from the publisher at:

http://www.mheducation.com.au/9781307074352-aus-engineering-management (link to be confirmed)

8. Course evaluation and development

Feedback on the course is gathered periodically using various means, including the UNSW myExperience process, informal discussion in the final class for the course, and the School’s Student/Staff meetings. Your feedback is taken seriously, and continual improvements are made to the course based, in part, on such feedback.
In this course, recent improvements resulting from student feedback include a business simulation-based group project.

9. Academic honesty and plagiarism

UNSW has an ongoing commitment to fostering a culture of learning informed by academic integrity. All UNSW students have a responsibility to adhere to this principle of academic integrity. Plagiarism undermines academic integrity and is not tolerated at UNSW. Plagiarism at UNSW is defined as using the words or ideas of others and passing them off as your own.

Plagiarism is a type of intellectual theft. It can take many forms, from deliberate cheating to accidentally copying from a source without acknowledgement. UNSW has produced a website with a wealth of resources to support students to understand and avoid plagiarism: student.unsw.edu.au/plagiarism The Learning Centre assists students with understanding academic integrity and how not to plagiarise. They also hold workshops and can help students one-on-one.

You are also reminded that careful time management is an important part of study and one of the identified causes of plagiarism is poor time management. Students should allow sufficient time for research, drafting and the proper referencing of sources in preparing all assessment tasks.

If plagiarism is found in your work when you are in first year, your lecturer will offer you assistance to improve your academic skills. They may ask you to look at some online resources, attend the Learning Centre, or sometimes resubmit your work with the problem fixed. However more serious instances in first year, such as stealing another student’s work or paying someone to do your work, may be investigated under the Student Misconduct Procedures.

Repeated plagiarism (even in first year), plagiarism after first year, or serious instances, may also be investigated under the Student Misconduct Procedures. The penalties under the procedures can include a reduction in marks, failing a course or for the most serious matters (like plagiarism in an honours thesis) even suspension from the university. The Student Misconduct Procedures are available here: www.gs.unsw.edu.au/policy/documents/studentmisconductprocedures.pdf

10. Administrative matters and links

All students are expected to read and be familiar with School guidelines and polices, available on the intranet. In particular, students should be familiar with the following:

- Attendance
- UNSW Email Address
- Computing Facilities
- Special Consideration
• **Exams**
• **Approved Calculators**
• **Academic Honesty and Plagiarism**
• **Disability Support Services**
• **Health and Safety**
• **Lab Access**

Dr Ron Chan
Dr Erik van Voorthuysen
August, 2019
Appendix A: Engineers Australia (EA) Competencies

Stage 1 Competencies for Professional Engineers

<table>
<thead>
<tr>
<th>PE1: Knowledge and Skill Base</th>
<th>Program Intended Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE1.1</td>
<td>Comprehensive, theory-based understanding of underpinning fundamentals</td>
</tr>
<tr>
<td>PE1.2</td>
<td>Conceptual understanding of underpinning maths, analysis, statistics, computing</td>
</tr>
<tr>
<td>PE1.3</td>
<td>In-depth understanding of specialist bodies of knowledge</td>
</tr>
<tr>
<td>PE1.4</td>
<td>Discernment of knowledge development and research directions</td>
</tr>
<tr>
<td>PE1.5</td>
<td>Knowledge of engineering design practice</td>
</tr>
<tr>
<td>PE1.6</td>
<td>Understanding of scope, principles, norms, accountabilities of sustainable engineering practice</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PE2: Engineering Application Ability</th>
<th>Program Intended Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE2.1</td>
<td>Application of established engineering methods to complex problem solving</td>
</tr>
<tr>
<td>PE2.2</td>
<td>Fluent application of engineering techniques, tools and resources</td>
</tr>
<tr>
<td>PE2.3</td>
<td>Application of systematic engineering synthesis and design processes</td>
</tr>
<tr>
<td>PE2.4</td>
<td>Application of systematic approaches to the conduct and management of engineering projects</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PE3: Professional and Personal Attributes</th>
<th>Program Intended Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE3.1</td>
<td>Ethical conduct and professional accountability</td>
</tr>
<tr>
<td>PE3.2</td>
<td>Effective oral and written communication (professional and lay domains)</td>
</tr>
<tr>
<td>PE3.3</td>
<td>Creative, innovative and pro-active demeanour</td>
</tr>
<tr>
<td>PE3.4</td>
<td>Professional use and management of information</td>
</tr>
<tr>
<td>PE3.5</td>
<td>Orderly management of self, and professional conduct</td>
</tr>
<tr>
<td>PE3.6</td>
<td>Effective team membership and team leadership</td>
</tr>
</tbody>
</table>