Faculty of Medicine and Health
School of Health Sciences

PHSL2101
PHSL2121
PHSL2501

Physiology 1A

COURSE OUTLINE

Term 1, 2021
PRACTICALS

1. Health & Safety Modules (online practical)
2. Fun with Blood
3. Cell Physiology – Membrane Potential Virtual Lab (online practical)
4. Skeletal Muscle
5. Introduction to the Cardiovascular System
6. Electrical & Mechanical Events in the Cardiac Cycle (online practical)
7. Sensory Physiology
COURSE CONVENORS

Course Convenor: Dr. Lesley Ulman
l.ulman@unsw.edu.au
Room 204 West Wing Wallace Wurth
(ph: 9385 3601)

Co-convenor: Dr. Nicole Marden
n.marden@unsw.edu.au
Room 204 West Wing Wallace Wurth
(ph: (02) 9065 0453)

If you need to consult with the course convenor or co-convenor, appointments can be set up through email.

LECTURERS IN THIS COURSE

A/Prof A. Moorhouse A.Moorhouse@unsw.edu.au
Dr F. von Wegner f.vonwegner@unsw.edu.au
Dr L. Ulman L.Ulman@unsw.edu.au
Dr T. Murphy Tim.Murphy@unsw.edu.au
A/Prof R. Vickery Richard.Vickery@unsw.edu.au

If you require to consult with any of these staff, appointments can be made via email.

The teaching staff involved in the running of this course are located on the second and third floors of the west wing of the Wallace Wurth building. Unfortunately, students are not able to access these areas and if you wish to contact one of us you will need to do so by email and we can organise to meet with you if necessary.

COURSE PRE REQUISITE

6 UOC of level 1 Biology; and 6 UOC of Level 1 CHEM; and 6 UOC Level 1 MATH or equivalent DPST courses

OBJECTIVES OF THE COURSE

This course is offered to second year students and is the first physiology course that you will encounter. The major aims of this course are to provide students with a basic understanding of the fundamental processes and mechanisms that serve and control the various functions of the body. It should be noted that, although introductory, this course in Human Physiology is comprehensive in scope. Areas treated in detail include both relatively simple cellular mechanisms (for example, the sequence of ion permeability changes in membranes that can result in the initiation and propagation of a nerve impulse along a nerve fibre) as well as more complex interactions between whole organ systems. The major areas of study include cell physiology, muscle, the cardiovascular system, blood and neurophysiology.

It should also be noted that, where appropriate, subject areas are treated quantitatively as well as qualitatively, an approach that requires students to have at least a basic knowledge of mathematics and chemistry.

COURSE STRUCTURE

This is a 6 unit of credit blended delivery course. There will be no face-to-face lectures – instead, lecture material will be pre-recorded and available for students to access week by week via Moodle. These online lecture modules will provide you with the concepts and theory essential for understanding the fundamental processes of body function. There will be a series of synchronous online Q&A sessions at 9am each Wednesday morning for students to ask questions and clarify any issues which may have arisen from the current lecture material. There will also be an additional synchronous online Q&A session at 9am on Monday in weeks 5 and 10 during which students can ask questions in preparation for the Mid-term and End of term exams.
There are online tutorials relating to all the major topic areas. These are designed to complement and enhance your understanding of the lecture material.

The practical classes are a major component of the course. Class sizes have been reduced to allow for physical distancing, and a range of additional health and safety measures have been introduced to maintain the health and safety of students and staff attending face-to-face classes. Where possible, we encourage students to enrol in a face-to-face practical group. If face-to-face practical class attendance is not possible due to remote learning or other factors, there is the option to enrol in an online practical group. The online practical group will be provided with online resources for the practical classes and will have the opportunity to engage with a synchronous Q&A session for each practical class.

If you have elected to attend the face-to-face practicals, there will be 4 timetabled practical sessions. You will be divided into small working teams of approximately 4 students within your practical group at the beginning of the term and you will remain in these teams throughout the term. These practicals comprise a fortnightly 3-hour laboratory session during which you will work in your teams and carry out the laboratory exercises outlined in the practical notes.

Practical sessions will give an insight into how knowledge is obtained, and how the results of experiments depend not only on what we measure but how we measure it. There are also 3 online self-directed practical classes which all students will complete in their own time. These classes are clearly outlined in your practical timetable.

UNSW LEARNING OUTCOMES

UNSW aims to provide an environment that fosters students achieving the following generic graduate attributes:

1. the skills involved in scholarly enquiry
2. an in-depth engagement with the relevant disciplinary knowledge in its interdisciplinary context
3. the capacity for analytical and critical thinking and for creative problem-solving
4. the ability to engage in independent and reflective learning
5. information literacy - the skills to appropriately locate, evaluate and use relevant information
6. the capacity for enterprise, initiative and creativity
7. an appreciation of, and respect for, diversity
8. a capacity to contribute to, and work within, the international community
9. the skills required for collaborative and multidisciplinary work
10. an appreciation of, and a responsiveness to, change
11. a respect for ethical practice and social responsibility
12. the skills of effective communication.

Not every course addresses all these attributes evenly. In second year physiology, attributes 1-4 are most relevant. More specific learning outcomes for this course are documented towards the end of this chapter.
ASSESSMENT

At this stage, it is most likely that the exams will be held online as remote, open book exams, but more details will be given closer to the exam dates.

<table>
<thead>
<tr>
<th>Mid-term Theory Exam (40 min duration)</th>
<th>20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>The mid-term exam will be held online at 9am Wednesday 17th March 2021 and will consist of the following:</td>
<td></td>
</tr>
<tr>
<td>• 9 multiple choice or true/false questions on material covered in all Cell Physiology, Muscle and ANS lecture material and tutorials.</td>
<td></td>
</tr>
<tr>
<td>• Two 13.5 minute short answer questions: one on Cell Physiology and one on Muscle.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>End of Term Exam (2 hours duration)</th>
<th>60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam period: 30th April–13th May; actual date and time to be advised.</td>
<td></td>
</tr>
<tr>
<td>The end of term exam will consist of the following:</td>
<td></td>
</tr>
<tr>
<td>• 20 multiple choice or true/false questions on all Blood, Cardiovascular System and Neurophysiology lecture material and tutorials.</td>
<td></td>
</tr>
<tr>
<td>• Three 13.5 minute short answer questions: one on Blood, one on Cardiovascular System and one on Neurophysiology lecture material and tutorials.</td>
<td></td>
</tr>
<tr>
<td>• 30 multiple choice questions on material pertaining to all practical classes (face-to-face and online) in Term 1.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tutorials</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>There will be 5 online tutorials over the term that relate to each of the major lecture topics. These tutorials will require you to interact and provide answers to questions. You can attempt these tutorials as many times as you wish but need to score 90% or more by the due date in order to be awarded the 2% course credit assigned to each of the online tutorials. A timetable showing the due dates for each tutorial is available on Moodle.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Post-laboratory revision modules</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>There will be 4 post-laboratory revision modules, one for each of the face-to-face practical classes. These must be completed after the respective practicals and have been designed to aid your understanding of the practical material. You can attempt these revision modules as many times as you wish but need to score 90% or more by the due date in order to attain the 2.5% course credit assigned to each revision module.</td>
<td></td>
</tr>
</tbody>
</table>

Formative Online Feedback Quizzes

There will be a series of 6 online feedback quizzes throughout the term covering each topic. These quizzes will be available online via Moodle throughout the term but are best attempted after completion of the corresponding lectures. These quizzes are to be used as a study aid and you will receive immediate detailed feedback after submitting your answers. The quizzes are to be attempted in your own time and as many times as you wish. There is no course credit assigned to these quizzes but the questions may be very similar to questions you will see in the exams.

Please note that online feedback quizzes are intended to motivate your study, provide feedback on your progress and to stimulate your learning. There is published data which demonstrates that students who participate in online feedback assessments perform significantly better than their peers in end of course examinations.

When attempting each online feedback assessment, it is recommended that you complete it under exam conditions (by exam conditions, we mean you should do it by yourself, don't look up the answers as you do it, and commit yourself to an answer), at least the first time you attempt it. This will provide the most realistic appraisal of your performance.
Give yourself plenty of time and attempt the feedback assessment in a place where you won't be interrupted. If you are attempting to simulate exam conditions, you should allow up to 2 minutes per question.

Write down items that you are not sure about as you go. Even if you get the question right you should still read further about anything that is unclear to you.

If you don't agree with, or can't understand the reason for an answer, ask the appropriate member of academic staff. If you are not sure who that is, ask your colleagues or the course convenor.

Grading of online tutorials

There are five major tutorial topics: Cell Physiology, Muscle, Cardiovascular System (CVS), Blood and Neurophysiology. Within each of these major tutorial topics, some are broken down into smaller sub-topic modules (e.g. Cell Physiology part 1, part 2, and part 3; see below).

Each of the major tutorial topics contribute 2% towards the final course grade. The grades for the smaller sub-topic modules within a major topic are equally weighted and thus depend on the number of smaller modules within that topic (e.g. for muscle there are 4 sub-topic modules, which are each worth 0.5%, whereas for the Cardiovascular System, there are only 2 sub-topic modules, which are therefore each worth 1%).

Remember that you need to achieve a minimum score of 90% in a particular tutorial module by the due date in order to be awarded the grade for that module. If you do not achieve the required minimum score, the gradebook will either show no grade or a zero grade for that particular module and you will need to attempt it again before the due date.

The grades for all the tutorial modules are outlined below:

<table>
<thead>
<tr>
<th>Major Tutorial Topic</th>
<th>Sub-topic Module</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial 1: Cell Physiology</td>
<td>Part 1: Cell membrane and membrane transport</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>Part 2: Action potential</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>Part 3: Synapse</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>Maximum Total for Cell Physiology</td>
<td>2.00</td>
</tr>
<tr>
<td>Tutorial 2: Muscle</td>
<td>Part 1: Skeletal Muscle</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Part 2: Smooth Muscle</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Part 3: Cardiac Muscle</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Part 4: Comparing skeletal, cardiac and smooth muscle</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Maximum Total for Muscle</td>
<td>2.00</td>
</tr>
<tr>
<td>Tutorial 3: CVS</td>
<td>Part 1: CVS lectures 1-4</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Part 2: CVS lectures 5-9</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Maximum Total for CVS</td>
<td>2.00</td>
</tr>
<tr>
<td>Tutorial 4: Blood</td>
<td>Only 1 part: Blood</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>Maximum Total for Blood</td>
<td>2.00</td>
</tr>
<tr>
<td>Tutorial 5: Neurophysiology</td>
<td>Part 1: Neural coding</td>
<td>0.66</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>Part 2: Wiring a brain</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>Part 3: Concept maps</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>Maximum Total for Neurophysiology</td>
<td>2.00</td>
</tr>
</tbody>
</table>

TEXTBOOK

This textbook comes with an online platform called Mastering A&P and within this are some interactive modules. We have selected some of these which provide a good supplement to the lecture and tutorial material and will help with revision of this material. You will not be examined on this material specifically as it really serves to clarify and consolidate your lecture content. There is no set time allocated for these suggested self-study sessions. You are encouraged to work through these sessions in your own time. Please refer to the section on self-study sessions for further details, including how to access these.

STUDENT REPRESENTATIVES

We are seeking student representatives for term 1 2021. Ideally we would like to have two representatives from each of our different cohorts (Science, Medical Science, Engineering, Optometry and Exercise Physiology). In terms of commitment it is expected that we would meet online with student representatives about twice during the term. During these meetings representatives will have the opportunity to report on any feedback relating to the course that has been gathered from peers either verbally or via email. Being a student representative gives you the opportunity to provide a voice for your student cohort and is a role that can be listed on your CV. Please email Dr Nicole Marden (N.Marden@unsw.edu.au) if you would like to be a student representative or if you would like any further information.

GENERAL INFORMATION

The Department of Physiology is part of the School of Medical Sciences and is within the Faculty of Medicine. It is located on the 2nd and 3rd floors of the West Wing of the Wallace Wurth Building. General inquiries can be submitted via the UNSW Student Portal Web Forms https://unswinsight.microsoftcrmportals.com/web-forms/

Professor Gary Housley is Head of Department and appointments to see him may be made through email (G.Housley@unsw.edu.au).

There is an honours program conducted by the School. The Honours program is co-ordinated by Dr. Cristan Herbert (c.herbert@unsw.edu.au). Any students considering an Honours year should discuss the requirements with him. Outstanding students may be considered for scholarships offered by the University and School and these are offered annually.

Postgraduate research degrees

The Department of Physiology offers students the opportunity to undertake a Doctorate (Ph.D). For further information contact the co-ordinator, A.Prof Pascal Carrive (P.Carrive@unsw.edu.au).

ATTENDANCE REQUIREMENTS

If you have enrolled to attend the face-to-face practical sessions, then attendance at ALL of these face-to-face practical classes is deemed to be compulsory unless you have a medical or other valid reason for non-attendance. QR codes will be used in
practical sessions for COVID-19 contact tracing and practical attendance records. It is your responsibility to ensure that you scan and register your attendance in each practical class via the QR code provided. Satisfactory completion of the work set for each class is essential and **IS A REQUIREMENT FOR PASSING PHYSIOLOGY.** Non-attendance for other than documented medical or other serious reasons may make you ineligible to successfully complete this course. At the very least you may be required to pass an additional oral examination on the practical classes, as well as undertaking the normal practical exam.

Students who miss practical classes due to illness or for other reasons must submit a medical certificate **WITHIN 7 DAYS** of missing a class. If received after this time, no consideration will be given and the student will be marked absent from that class. Medical certificates may be sent via email to the course convenors (l.ulman@unsw.edu.au or n.marden@unsw.edu.au), submitted to academic staff during lab time, or left with a member of the technical staff located in room 118 East Wing Wallace Wurth Building.

The following details must be provided along with the medical certificate: Name, Student number, Group number, Date of the class, Name of class missed.

The practical component of the final exam is compulsory FOR ALL STUDENTS.

Please note that you are not required to apply for special consideration via Online Services in myUNSW for a missed practical class.

Missing any examination however, requires lodging a medical certificate via Online Services in myUNSW within 3 DAYS (further details on how to do this are linked from the SoMS Student advice page: medicalsciences.med.unsw.edu.au/students/undergraduate/advice-students).

Important note regarding COVID-19 and attendance:
Please note that you **SHOULD NOT** come to campus and attend practical classes if you have any COVID-19 symptoms, even very mild symptoms; instead, you should self-isolate at home and get tested. The main symptoms to look out for are fever, cough, sore/scratchy throat, shortness of breath, runny nose, loss of smell and loss of taste. For further information on symptoms, testing, self-isolation, hygiene and more, please refer to the NSW Health website: https://www.nsw.gov.au/covid-19/how-to-protect-yourself-and-others

In addition, you **SHOULD NOT** come to campus and attend practical classes if you have been advised to self-isolate because you are a close contact of somebody with COVID-19. Please remember to check NSW News and Updates for the latest COVID-19 public health alerts: https://www.nsw.gov.au/covid-19/latest-news-and-updates

If you have had a COVID-19 test, you must remain at home in self-isolation while awaiting the test results. Even if you test negative, you must not come to campus and attend practical classes until all your symptoms have resolved.

Students who miss practical classes due to COVID-19 related public health measures such as self-isolation are not required to provide any medical documentation, however you should contact the course convenors (l.ulman@unsw.edu.au or n.marden@unsw.edu.au) to inform them of your absence.

OFFICIAL COMMUNICATION BY EMAIL

All students in courses PHSL2101, 2121 and 2501 are advised that email is the official means by which the School of Medical Sciences at UNSW will communicate with you. All email messages will be sent to your official UNSW email address (e.g. z1234567@unsw.edu.au) and, if you do not wish to use the University email system, you MUST arrange for your official mail to be forwarded to your chosen address. Email correspondence with the University should be from your UNSW email address in order to reduce identity confusion.

The University recommends that you check your mail at least every other day. Facilities for checking email are available in the School of Medical Sciences and in the University library. Further information and assistance is available from the IT Service Centre (02) 9385 1333.

NOTICES

All current timetables, notices and information relevant to you will be available on Moodle. It is your responsibility to check Moodle regularly.

All lectures are recorded by the Lecture Recording+ system and can be accessed via Moodle. Textbooks and some reference materials are available through open reserve.

TEACHING RESOURCES IN PHYSIOLOGY

Moodle: moodle.telt.unsw.edu.au
Information about the course and a number of electronic study resources can be accessed via the UNSW Moodle learning management system. Lecture notes, practical notes, online lecture, tutorial and laboratory modules, access to your grades, course documents and reference material can be found on the course Moodle site.

For System Requirements for Moodle refer to: https://student.unsw.edu.au/moodle-system-requirements

APPLICATIONS FOR SPECIAL CONSIDERATION FOR MISSED ASSESSMENTS / EXAMS

Please note the following Statement regarding Special Consideration.

If you believe that your performance in a course, either during term or in an examination, has been adversely affected by sickness or for any other reason, you should ask for special consideration in the determination of your results. Such requests should be made as soon as practicable after the problem occurs. Special consideration sought more than three days after an examination in a course WILL NOT be accepted except in TRULY exceptional circumstances.

An application for special consideration must be made via Online Services in myUNSW. You must obtain and attach Third Party documentation (e.g. medical certificates) before submitting the application. Failure to do so may result in the application being rejected. Log into myUNSW and go to My Student Profile tab > My Student Services channel > Online Services > Special Consideration. Once completed, submit to UNSW Student Central (https://student.unsw.edu.au/central). In addition to this, you should also inform the course convenor that you have applied for special consideration.

UNSW now has a Fit to Sit / Submit rule, which means that if you sit an exam or submit a piece of assessment, you are declaring yourself fit to do so and cannot later apply for Special Consideration.

If you miss an assessment and have applied for Special Consideration, this will be taken into account when your final grade is determined. You should note that marks derived from
completed assessment tasks may be used as the primary basis for determining an overall mark e.g. by extrapolating from your percentile rank on those tasks. Where appropriate, supplementary examination may be offered. **These will be held between** Monday 24th May and Friday 28th May so you MUST ensure that you are available throughout this period.

Normally, if you miss an exam (without medical reasons) you will be given an absent fail. If you start an exam late no time extension will be granted.

Please refer to student.unsw.edu.au/special-consideration for further details regarding special consideration.

REPEATING STUDENTS

Practical class exemptions may be granted to repeat students but students **must** check with the course convenor whether they have exemption **prior** to their first practical class. All students must be familiar with the material covered in the practical classes. All students must do the practical component of the final exam.

CONTINUAL COURSE IMPROVEMENT

Periodically student evaluative feedback on the course is gathered, using among other means, UNSW's MyExperience process. Student feedback is taken seriously, and continual improvements are made to the course based in part on such feedback. Significant changes to the course will be communicated to subsequent cohorts of students taking the course.

STUDENT SUPPORT SERVICES

For all students, there are some useful links to help you with your online learning.
- Transitioning to Online Learning https://www.covid19studyonline.unsw.edu.au/
- Guide to Online Study https://student.unsw.edu.au/online-study
- UNSW Student Life Online https://student.unsw.edu.au/help#main-content

Those students who have a disability that requires some adjustment in their teaching or learning environment are encouraged to discuss their study needs with the course convenor prior to, or at the commencement of their course, or with the Disability Advisor in the Equitable Learning Services unit (formerly Disability Support Services) (9385 4734 or https://student.unsw.edu.au/els). Issues to be discussed may include access to materials, signers or note-takers, the provision of services and additional exam and assessment arrangements. Early notification is essential to enable any necessary adjustments to be made.

ACADEMIC SKILLS

The UNSW Learning and Career Hub offers workshop programmes throughout the academic year on a wide variety of Academic and Career Development skills. These include referencing, writing skills, critical thinking, exam preparation and time management. Individual assistance is available on request. Further information can be obtained using the link https://student.unsw.edu.au/support

ACADEMIC HONESTY AND PLAGIARISM

The School of Medical Sciences will not tolerate plagiarism in submitted written work. The University regards this as academic misconduct and imposes severe penalties. Evidence of plagiarism in submitted assignments, etc. will be thoroughly investigated and may be penalised by the award of a score of zero for the assessable work. Flagrant plagiarism will be directly referred to the Division of the Registrar for disciplinary action under UNSW rules.
What is plagiarism? STUDENT.UNSW.EDU.AU/PLAGIARISM

Plagiarism at UNSW is defined as using the words or ideas of others and passing them off as your own. Examples include:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copying</td>
<td>Using the same or very similar words to the original text or idea without acknowledging the source or using quotation marks. This includes copying materials, ideas or concepts from a book, article, report or other written document, presentation, composition, artwork, design, drawing, circuitry, computer program or software, website, internet, other electronic resource, or another person’s assignment, without appropriate acknowledgement.</td>
</tr>
<tr>
<td>Inappropriate paraphrasing</td>
<td>Changing a few words and phrases while mostly retaining the original structure and/or progression of ideas of the original, and information without acknowledgement. This also applies in presentations where someone paraphrases another’s ideas or words without credit and to piecing together quotes and paraphrases into a new whole, without appropriate referencing.</td>
</tr>
<tr>
<td>Collusion</td>
<td>Presenting work as independent work when it has been produced in whole or part in collusion with other people. Collusion includes: students providing their work to another student before the due date, or for the purpose of them plagiarising at any time; paying another person to perform an academic task and passing it off as your own; stealing or acquiring another person’s academic work and copying it; offering to complete another person’s work or seeking payment for completing academic work. This should not be confused with academic collaboration.</td>
</tr>
<tr>
<td>Inappropriate citation</td>
<td>Citing sources which have not been read, without acknowledging the 'secondary' source from which knowledge of them has been obtained.</td>
</tr>
<tr>
<td>Self-plagiarism</td>
<td>'Self-plagiarism' occurs where an author republishes their own previously written work and presents it as new findings without referencing the earlier work, either in its entirety or partially. Self-plagiarism is also referred to as 'recycling', 'duplication', or 'multiple submissions of research findings' without disclosure. In the student context, self-plagiarism includes re-using parts of, or all of, a body of work that has already been submitted for assessment without proper citation.</td>
</tr>
</tbody>
</table>

Students are reminded of their Rights and Responsibilities in respect of plagiarism, as set out in the University Undergraduate and Postgraduate Handbooks, and are encouraged to seek advice from academic staff whenever necessary to ensure they avoid plagiarism in all its forms. student.unsw.edu.au/plagiarism is the central University online resource for information on plagiarism and academic honesty.

GUIDELINES ON EXTRA-CURRICULAR ACTIVITIES AFFECTING ATTENDANCE

Students should refer to the following website for information relating to extracurricular activities.

GRIEVANCE RESOLUTION OFFICER

In case you have any problems or grievance about the course, you should try to resolve it with the Course Convenor (Dr Lesley Ulman 9385 3601). If the grievance cannot be resolved in this way, you should contact the School of Medical Sciences Grievance Officer, Prof Nick di Girolamo (n.digirolamo@unsw.edu.au).
TIMETABLES
<table>
<thead>
<tr>
<th>Week No.</th>
<th>Synchronous Online</th>
<th>Asynchronous Online Lecture Recordings</th>
<th>Synchronous Online</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mon 9-10 AM</td>
<td>(To be accessed by students in their own time during the designated week)</td>
<td>Wed 9-10 AM</td>
</tr>
<tr>
<td></td>
<td>Wks 1, 5 & 10</td>
<td></td>
<td>Wks 1-5, 7-10</td>
</tr>
<tr>
<td>O-Week, 8-Feb</td>
<td>Moodle Welcome, Enrol in groups, Online Course Info & Animal Ethics module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 15-Feb</td>
<td>Course welcome / Introduction & Animal Ethics Q&A ULMAN / VICKERY / ALL STAFF</td>
<td>Cell Physiology 1, 2 & 3 MOORHOUSE</td>
<td>Cell Physiology Q&A MOORHOUSE</td>
</tr>
<tr>
<td>2 22-Feb</td>
<td>Cell Physiology 4, 5 & 6 MOORHOUSE</td>
<td>Cell Physiology Q&A MOORHOUSE</td>
<td></td>
</tr>
<tr>
<td>3 1-Mar</td>
<td>Muscle 1, 2 & 3 VON WEGNER</td>
<td>Muscle Q&A VON WEGNER</td>
<td></td>
</tr>
<tr>
<td>4 8-Mar</td>
<td>ANS - VICKERY Cardiovascular System 1 & 2 - ULMAN</td>
<td>ANS / Cardiovascular System Q&A VICKERY / ULMAN</td>
<td></td>
</tr>
<tr>
<td>5 15-Mar</td>
<td>Mid-term Revision Q&A ALL STAFF</td>
<td>Cardiovascular System 3 & 4 - ULMAN</td>
<td>MIDSESSION EXAM</td>
</tr>
<tr>
<td>6 22-Mar</td>
<td>Flexibility Week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 29-Mar</td>
<td>Cardiovascular System 6, 7, 8 & 9 MURPHY</td>
<td>Cardiovascular System Q&A ULMAN / MURPHY</td>
<td></td>
</tr>
<tr>
<td>8 5-Apr</td>
<td>EASTER MONDAY</td>
<td>Blood 1, 2 & 3 ULMAN</td>
<td>Cardiovascular System / Blood Q&A ULMAN / MURPHY</td>
</tr>
<tr>
<td>9 12-Apr</td>
<td>Neurophysiology 1, 2 & 3 VICKERY</td>
<td>Neurophysiology Q&A VICKERY</td>
<td></td>
</tr>
<tr>
<td>10 19-Apr</td>
<td>Final Exam Prac Revision Q&A ALL STAFF</td>
<td>Neurophysiology 4, 5 & 6 VICKERY</td>
<td>Neurophys / Final Exam Revision Q&A VICKERY /ALL STAFF</td>
</tr>
</tbody>
</table>
Practical class information

Students have been given the opportunity to enrol in either a face-to-face or online practical group. Where possible, we encourage students to enrol in a face-to-face practical group as practical classes are a core experience in your degree and provide the opportunity to acquire certain essential skills. It should be noted that class sizes have been reduced to allow for physical distancing, and a range of additional health and safety measures have been introduced to maintain the health and safety of students and staff attending face-to-face classes. If face-to-face practical class attendance is not possible due to location or other factors, then students have the option to enrol in the online practical group. Students in the online practical group will be provided with online resources to replace the face-to-face practicals, and will have the opportunity to engage in a synchronous online Q&A session related to each of the face-to-face practical classes.

All students will complete 7 practical classes. If you have enrolled in a face-to-face practical group, 4 of the 7 practicals (Fun with Blood, Skeletal Muscle, Introduction to the Cardiovascular System and Sensory Physiology) will be run as face-to-face classes in our teaching laboratories in the Wallace Wurth Building, while the remaining 3 practical classes will be self-directed online practical classes. All 7 practical classes are examinable in the final examination.

The first self-directed online practical class is the Health and Safety practical and this must be completed prior to attending your first face-to-face practical. Completion of this practical will be monitored and students will not be allowed to enter the laboratory unless this has been done.

The second self-directed online practical class is the Cell Physiology – Membrane Potential Virtual Lab. It is recommended that students complete this virtual lab during weeks 2 and 3 after engaging with the Cell Physiology lecture series. Note that it will remain open for the duration of the term should students wish to access it again for revision purposes.

The third self-directed online practical class is the Electrical and Mechanical Events in the cardiac cycle module. This is best attempted after the CVS lectures covering this material.
<table>
<thead>
<tr>
<th>Week</th>
<th>Day & Time</th>
<th>Date</th>
<th>Prac Group</th>
<th>Face-to-face practicals Wallace Wurth East Wing LAB 115 & 116</th>
<th>Prac Group</th>
<th>Online practicals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tues 10-1, Tues 2-5, Wed 10-1, Wed 2-5</td>
<td>16/2</td>
<td>All Groups</td>
<td>N/A</td>
<td>All Groups</td>
<td>ONLINE HEALTH & SAFETY PRACTICAL* MUST BE DONE BEFORE ATTENDING THE FIRST FACE-TO-FACE PRACTICAL</td>
</tr>
<tr>
<td>2</td>
<td>Tues 10-1, Tues 2-5, Wed 10-1, Wed 2-5</td>
<td>23/2</td>
<td>1</td>
<td>FUN WITH BLOOD</td>
<td>All Groups</td>
<td>ONLINE CELL PHYSIOLOGY – MEMBRANE POTENTIAL VIRTUAL LAB</td>
</tr>
<tr>
<td>3</td>
<td>Tues 10-1, Tues 2-5, Wed 10-1, Wed 2-5</td>
<td>2/3</td>
<td>5</td>
<td>FUN WITH BLOOD</td>
<td>All Groups</td>
<td>SKELETAL MUSCLE</td>
</tr>
<tr>
<td>4</td>
<td>Tues 10-1, Tues 2-5, Wed 10-1, Wed 2-5</td>
<td>9/3</td>
<td>1</td>
<td>SKELETAL MUSCLE</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Tues 10-1, Tues 2-5, Wed 10-1, Wed 2-5</td>
<td>16/3</td>
<td>5</td>
<td>SKELETAL MUSCLE</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Tues 10-1, Tues 2-5, Wed 10-1, Wed 2-5</td>
<td>23/3</td>
<td></td>
<td>FLEXIBILITY WEEK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Tues 10-1, Tues 2-5, Wed 10-1, Wed 2-5</td>
<td>30/3</td>
<td>1</td>
<td>INTRO TO CVS</td>
<td>All Groups</td>
<td>ONLINE ELECTRICAL & MECHANICAL EVENTS IN THE CARDIAC CYCLE MODULE</td>
</tr>
<tr>
<td>8</td>
<td>Tues 10-1, Tues 2-5, Wed 10-1, Wed 2-5</td>
<td>6/4</td>
<td>5</td>
<td>INTRO TO CVS</td>
<td>All Groups</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Tues 10-1, Tues 2-5, Wed 10-1, Wed 2-5</td>
<td>13/4</td>
<td>1</td>
<td>SENSORY PHYSIOLOGY</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Tues 10-1, Tues 2-5, Wed 10-1, Wed 2-5</td>
<td>20/4</td>
<td>5</td>
<td>SENSORY PHYSIOLOGY</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

COMPULSORY LAB COATS REQUIRED FOR “SHADED” CLASSES

* You MUST complete the online Health & Safety practical class prior to attending your first face-to-face practical class (Fun with Blood). If you have not completed this online practical, you will NOT be permitted to attend the Fun with Blood practical class.
<table>
<thead>
<tr>
<th>Week</th>
<th>Date & Time</th>
<th>Prac Group</th>
<th>Practical</th>
</tr>
</thead>
</table>
| 1 | Asynchronous | 9 | HEALTH & SAFETY
Complete online practical |
| | online | | |
| 2 | Asynchronous | 9 | FUN WITH BLOOD
Complete pre-lab module and view recording of practical |
| | online | | CELL PHYSIOLOGY – MEMBRANE POTENTIAL
Complete Virtual lab |
| 3 | Tues 2nd March 1-2pm | 9 | FUN WITH BLOOD
Synchronous online Q&A session |
| 4 | Asynchronous | 9 | SKELETAL MUSCLE
Complete pre-lab module and view recording of practical |
| 5 | Tues 16th March 1-2pm | 9 | SKELETAL MUSCLE
Synchronous online Q&A session |
| 6 | | | Flexibility Week |
| 7 | Asynchronous | 9 | INTRO TO CVS
Complete pre-lab module and view recording of practical |
| | online | | ELECTRICAL & MECHANICAL EVENTS IN THE CARDIAC CYCLE
Complete online practical |
| 8 | Tues 6th April 1-2pm | 9 | INTRO TO CVS
Synchronous online Q&A session |
| 9 | Asynchronous | 9 | SENSORY PHYSIOLOGY
Complete pre-lab module and view recording of practical |
| 10 | Tues 20th April 1-2pm | 9 | SENSORY PHYSIOLOGY
Synchronous online Q&A session |
Health and Safety is a primary concern for both students and staff working in any laboratory.

The following regulations MUST be adhered to when participating in Physiology practical classes:

- Each practical class has a student risk assessment (SRA) and a student safe working procedure (SSWP) associated with it.
- The SRA identifies the hazards and risks associated with the particular practical and outlines appropriate controls that must be followed to minimize these risks. The SRA also lists the personal protective equipment (PPE) that students are required to wear for that class, emergency procedures and clean up and waste disposal instructions. Please note that the SRA has been updated carefully to incorporate COVID-19 safety precautions.
- The SSWP provides background information relating to the class and outlines the procedures to be carried out in that class.
- Students must read the practical notes and sign the SRA prior to commencing the class.
- In each laboratory there are also more comprehensive school approved risk assessments, associated safe work procedures and safety data sheets (SDS) for each particular class. You may refer to these if you require further information. First aid kits and specific spill kits are also located in the laboratories.
- If any accidents or incidents occur they should be reported immediately to the demonstrator in charge of the class who will record the incident and recommend what further action is required.
- Students are required to wear the appropriate PPE for each class. As part of our COVID-19 safety precautions, students must wear surgical facemasks in addition to other PPE required for the class. Students should bring their own masks or they can purchase one from the Technical staff or on campus.
- Enclosed shoes are mandatory for entering any laboratory and you will not be permitted to participate in the practical if you are not wearing appropriate footwear. Most practical classes will also require a lab coat which you must provide. You must regularly wash your lab coat. If you do not bring your lab coat to these classes you will not be able to participate.
- Many classes will require you to wear gloves (which will be provided). Gloves must be removed before writing in lab books and using computers or other electrical equipment.
- You must not wear lab coats or gloves outside the laboratory.
- You must not eat or drink in any laboratory.
- Students are expected to arrive on time. Any student arriving more than 10 minutes late may be refused entry.
- Mobile phones should be turned off before entering the class.
- Laboratory computers may only be used for work relating to the practical class.
- It is expected that students behave appropriately in laboratory classes. In the event of inappropriate behavior students may be asked to leave.
- It is of course vital that animals used in practical classes MUST be treated humanely and with respect. Taking photos is ABSOLUTELY UNACCEPTABLE, and will result in removal from the class and a referral to the Head of Department.

The procedures used in the laboratory classes involving the use of animals have been approved by the UNSW Animal Ethics Committee on the Use of Animals in Research and Teaching (Approval Number: ACEC 19/67B expiring May 2022).
Experiments in this manual, which involve the use of human subjects, have been considered and approved by the School of Medical Sciences Teaching Ethics Committee on Experimental Procedures Involving Human Subjects for teaching. Practical classes involving your participation as a subject requires you to read the Participant information sheet and sign a witnessed, informed consent form.

PRACTICAL WORK IN PHYSIOLOGY

An important component of our Physiology courses is the practical work. All the classes have been carefully considered and they are included for various reasons. It is hoped that students will not only gain maximum benefit from the content of the classes but will understand why they are included.

The scope of the practical work in the different courses offered is determined by a number of factors such as the level of the course, the perceived needs of the students for whom the course is intended, and the safety of different experimental procedures. Some valuable classes have always been beyond the financial or human resources of the Department, and regrettably financial and other pressures continue to militate against the practical component of the curriculum.

The following should help students understand why the course is given and why the classes have been chosen.

Why practical work? The value of having practical work at all may be questioned. It is sometimes said that one could use the time simply in working from a book or notes, and learn more. This may be true in the short term in some instances. But even if it were true one must understand that the purpose of the course is not merely to acquire as much book learning as possible in the minimum time. In discussing Medicine, Sir William Osler once said “To study Medicine without books is to sail an uncharted sea; to study Medicine without seeing patients is not to go to sea at all”. Much the same could be said about studying science without experiments. The practical course in an undergraduate curriculum cannot produce a fully fledged scientist any more than a few yacht races can produce a master mariner; but at least doing some experiments will give an insight into how knowledge is obtained, and how the results of experiments depend not only on what we measure but how we measure it.

These classes show important principles or methods and it must also be realized that many graduates from the Science course will work in health-related areas.

As far as possible the classes in the practical course cover a wide range of physiological systems. We have also incorporated several different types of practical classes which provide information on how physiological systems function as well as allowing students to develop various practical and safety skills in the laboratory.

Some of the different sorts of practical classes are listed below.

1. **Training in general laboratory practice.** An example is the class on health and safety and safe handling of biological fluids, which is designed to warn students of the dangers of some laboratory procedures and to teach how to minimize these dangers.

2. **Classes on human subjects.** Much of physiology has been, and will continue to be, driven by an interest in human function. Therefore it is desirable that students perform a number of experiments on one another and learn what it is like to be a subject. They also learn the sensitivities of one another and the carrying out of these experiments is some introduction to what they may be doing later in their careers.
These classes illustrate physiological principles but have other values. For example the class on human blood pressure introduces students to a very common clinical measurement; and the classes on respiratory gas exchange and control of respiration (term 2) give an introduction to some of the physiological testing or monitoring procedures used in operating theatres, in intensive care units, or in a sports medicine laboratory.

3. **Classes using animals.** There are several reasons for classes involving use of animals. Many of the advances in Physiology and related sciences have come from animal-based research, and in the foreseeable future many more advances will come from such work. It is vital that students are acquainted with the use of animals so that they can understand how present knowledge has been obtained and how it may change in the future. If there is no exposure to animal based experiments, it is all too easy to fall into one of two errors. It can be thought (wrongly) that animal experiments cannot be applicable to human beings; or it can be thought (also wrongly) that animal results can be transferred directly to human beings. Some examples illustrate this. Many of the cardiovascular reflexes that apply to humans can be shown well in the rabbit, or other experimental animals, and these cannot be shown in class in the intact animal or in a human being. However study of the rabbit shows that its resting heart rate is much higher than that of humans - the two species have a different resting balance in the influence of the sympathetic and parasympathetic nervous systems. Without study of rabbits or other animals, one cannot see how these vital reflexes operate; nor can one see the limitation of animals as experimental models.

For experiments on microcirculation, nerve conduction and muscle contraction, amphibian preparations are used. They have advantages in several important respects. The red cells of the amphibian are nucleated and larger than those of mammals and so are easier to see under the microscope. Also the preparations from these cold-blooded animals last better at room temperature than preparations from a warm-blooded mammal. Much of the knowledge of the properties of nerve fibres and muscle has been gained from studies on cold-blooded animals.

It is of course vital that animals in classes are treated humanely and with respect and it is important that students are given instruction in these aspects, both by word and example.

4. **Classes on cells.** The basis of animal function is the cell and some classes study the properties of cells on their own rather than the properties of organ systems. An example is the section on blood typing included in the class on safe handling of biological fluids.

5. **Classes based on computers.** A number of classes involve computer simulated experiments. This is partly in response to pressures on resources and partly because some aspects of the course are better taught in this way. For instance, the accurate, direct recording of membrane and action potentials in nerves requires extensive experience and specialised equipment making it impractical for a large introductory Physiology course. In this case students can be given ideal results and from there calculate the properties of the nerve.

There are other benefits of the practical course. The experiments are not designed for fast learning but they give greater depth of study in some areas. The classes also provide an opportunity for students and staff to meet and discuss the work together, in a different setting from the tutorial class. Many problems of understanding are resolved in this way.

We believe that the present practical course is a good balance between what is ideal and what is readily achievable. It includes classes with a number of different approaches and on
different systems of the body. We hope that all students will find it stimulating and profitable and the Department is always open to suggestions as to how improvements can be made.

Staff of the Department of Physiology.