ANAT2451
Functional Anatomy for Health and Exercise Science

Course Outline
Term 1, 2022

School of Medical Sciences
Faculty of Medicine & Health
Table of Contents

1. **Staff** 3
2. **Course information** 3
 2.1 Course summary 3
 2.2 Course aims 3
 2.3 Course learning outcomes (CLO) 4
 2.4 Relationship between course and program learning outcomes and assessments 4
3. **Strategies and approaches to learning** 4
 3.1 Learning and teaching activities 4
 3.2 Expectations of students 6
 3.3 Ethical behaviour and human remains 6
4. **Course schedule and structure** 7
5. **Assessment** 8
 5.1 Assessment tasks 8
 5.2 Assessment criteria and standards 10
 5.3 Submission of assessment tasks 11
 5.4. Feedback on assessment 11
6. **Academic integrity, referencing and plagiarism** 12
7. **Readings and resources** 13
8. **Administrative matters** 14
9. **Additional support for students** 14
10. **Student risk assessments** 15
1. Staff

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Convenor</td>
<td>Dr Rachel Berry</td>
<td>r.berry@unsw.edu.au</td>
</tr>
<tr>
<td>Co-convenor</td>
<td>Dr Stanley Serafin</td>
<td>s.serafin@unsw.edu.au</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dr Varun Sahni</td>
<td>v.sahni@unsw.edu.au</td>
</tr>
</tbody>
</table>

If you would like an appointment with any of the teaching staff, please arrange this via email. If you have a general question relating to the course content, please post on the discussion forum or send your question to the course email address – anat2451@unsw.edu.au.

2. Course information

Units of credit: 6

Pre-requisite(s): ANAT1551(Introductory Anatomy for Health & Exercise Science) OR ANAT2111 (Introductory Anatomy)

Teaching times and locations:

<table>
<thead>
<tr>
<th>Seminars (lectures)</th>
<th>Practical sessions</th>
<th>Tutorials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-recorded</td>
<td>Thursday AND Friday</td>
<td>Friday</td>
</tr>
<tr>
<td>It is strongly</td>
<td>9am-11am OR 11am-1pm Biological Sciences Lab 7, Level 1 (Anatomy Lab)</td>
<td>3pm-4pm OR 4pm-5pm Quadrangle G034 (3-4PM AND 4-5PM) OR Goldstein G09 (3-4PM)</td>
</tr>
<tr>
<td>recommended you watch the appropriate seminar recording PRIOR to attending your practical and tutorial classes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For further information please consult the ANAT2451 online timetable available at http://timetable.unsw.edu.au/2022/ANAT2451.html#S1.

2.1 Course summary

This course covers the musculoskeletal anatomy of the human trunk, lower limb and upper limb in relation to its function in movement. Anatomical principles are studied in relation to the analysis and description of movement. The course includes study of the functional aspects of muscles and joints, and consideration of the mechanical properties of tissues. Laboratory classes involve the study of prospected specimens, X-rays and surface anatomy.

2.2 Course aims

1. To develop students' knowledge of the musculoskeletal anatomy of the trunk, upper limb and lower limb.

2. To develop students' understanding of the functional principles underlying joint movements and muscle actions in the trunk, upper limb and lower limb.
3. To develop students’ understanding of the ways in which the structure and function of muscle and joints relates to human movement.

2.3 Course learning outcomes (CLO)

At the successful completion of this course you (the student) should be able to:

1. Demonstrate a thorough knowledge of the functional anatomy of the trunk, upper limb and lower limb.
2. Apply knowledge in evaluating the involvement of muscles in movement.
3. Appreciate the links between functional anatomy and biomechanics.
4. Demonstrate practical laboratory skills in anatomy and an understanding of the ethics of working with human remains.

2.4 Relationship between course and program learning outcomes and assessments

<table>
<thead>
<tr>
<th>Course Learning Outcome (CLO)</th>
<th>LO Statement</th>
<th>Program Learning Outcome (PLO)</th>
<th>Related Tasks & Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLO 1</td>
<td>Demonstrate a thorough knowledge of the functional anatomy of the trunk, upper limb and lower limb.</td>
<td>PLO 1</td>
<td>Continuous assessment quizzes, spot tests, theory exam, TBL assessments</td>
</tr>
<tr>
<td>CLO 2</td>
<td>Apply knowledge in evaluating the involvement of muscles in movement</td>
<td>PLO 1</td>
<td>Continuous assessment quizzes, spot tests, theory exam, TBL assessments</td>
</tr>
<tr>
<td>CLO 3</td>
<td>Appreciate the links between functional anatomy and biomechanics.</td>
<td>PLO 1, PLO 4</td>
<td>Continuous assessment quizzes, theory exam, TBL assessments</td>
</tr>
<tr>
<td>CLO 4</td>
<td>Demonstrate practical laboratory skills in anatomy and an understanding of the ethics of working with human remains.</td>
<td>PLO6</td>
<td>Spot tests</td>
</tr>
</tbody>
</table>

3. Strategies and approaches to learning

3.1 Learning and teaching activities

This is a blended learning course (i.e., has both face-to-face and online learning activities) and consists of 8 hours per week of scheduled learning activities. These comprise a 2-hour seminar, two 2-hour practical laboratory classes, a 1-hour team-based learning session (tutorial), and at least 1 hour of an online activity each week.

Student interaction and engagement with the content of the course underpins all learning activities. Students are initially introduced to anatomical regions in the form of seminars (lectures) incorporating multimedia-learning tools. With this theoretical knowledge, students engage in practical learning
activities during the laboratory sessions where the teacher/tutor guides the student and encourages them to actively participate in their learning.

Students are always encouraged to question, observe, and share knowledge and experiences that help their learning and that of their peers. The anatomy laboratory is a wonderful and fascinating environment for discovery, and students are given every opportunity to explore cadaveric specimens, participate in active discussions, and resolve queries for themselves.

Seminars (lectures) – This approach is used to present relatively large amounts of information within a given time on specific topics throughout the course. Seminars will be pre-recorded, and time has been scheduled on Monday for students to watch them. However, it is recommended that students watch the seminar prior to attending the practical and tutorial classes covering the same topic. Seminar notes will be available on the course Moodle site, so students should be able to think about and develop an understanding of the anatomical concepts as they are presented, rather than writing voluminous notes. However, there will be information and explanations presented in seminars in addition to those covered in the notes that students should take down if it helps them understand the material.

Laboratory practical sessions – The purpose of the practical sessions is to give students first-hand experience of the content covered. The anatomy laboratory is the best resource for learning anatomy and is a wonderful place of privilege, discovery and discussion. The laboratory sessions are small group sessions that allow students to explore prosected specimens of the musculoskeletal system. Although the tutor is present to oversee the activities in these sessions, these sessions are meant to be led by students working in groups of 3-4.

Tutorials – These sessions are designed for students to apply the concepts that they have learnt in the course and to develop team skills. In these sessions, students will work in small teams. The class will be divided into teams within the first few weeks of the course and the teams will remain the same for the duration of the course. During tutorial time students will complete team activities that will contribute to their final assessment in this course. Individual contribution to the activities will be evaluated by the team and will contribute to a student’s final grade in this course. Students will also be asked to complete an evaluation of each of the team members.

Virtual Anatomy Adaptive Tutorials (VAnAT) – The VAnAT will be made available to students periodically via a link in Moodle during this course. These are virtual tutorials based on high quality images of prosected specimens. The tutorials consist of a series of interactive questions, and students are expected to apply the content covered in lectures and laboratory sessions to answer these. VAnAT are also a useful resource to consolidate and revise course content. Sessions are structured to encourage student participation in activities and to enhance their learning. Students will benefit most if they complete these tutorials consistently. The tutorials focus on applying the principles of functional anatomy of the limbs.

Independent study – There is insufficient time in the lectures, tutorials and practicals for students to develop a deep understanding of the concepts covered in this course. To achieve the learning outcomes that will be assessed, students will need to revise the material presented in the course regularly and do additional reading beyond the lecture materials to learn effectively. Relevant additional resources, including textbook chapters, will be cited in lecture and practical sessions.
3.2 Expectations of students
Students are reminded that UNSW recommends that a 6 units-of-credit course should involve about 150 hours of study and learning activities. The formal learning activities in this course total approximately 70 hours throughout the term and students are expected (and strongly recommended) to contribute the remaining number of hours in team learning activities, self-directed learning, and additional study.

Attendance at practical classes and tutorials is extremely important for your learning. Your attendance must be recorded in the class roll at the start of each class. Arrival more than 15 minutes after the start of the class will be recorded as non-attendance. It is your responsibility to ensure that the demonstrator or tutor records your attendance, and no discussions will be entered into after the completion of the class. Satisfactory completion of the work set for each class is essential. Students who miss practical or tutorial sessions due to illness or for other reasons must submit a copy of medical certificates or other documentation to the Course Convenor.

For details on the Policy on Class Attendance and Absence see Advice for Students and the Policy on Class Attendance and Absence.

The practical class is an opportunity for students to develop graduate attributes by behaving in an ethical, socially responsible, and professional manner within the class. Students must take due care with biological and hazardous material and make sure all equipment is left clean and functional. In the interests of safety, special attention should be paid to any precautionary measures recommended in the notes. If any accidents or incidents occur, they should be reported immediately to the demonstrator in charge of the class who will record the incident and recommend what (if any) further action is required.

For more details see Advice for Students-Practical Classes and the Dissecting Room Rules.

3.3 Ethical behaviour and human remains
A central form of learning in this course is to study prosected (i.e., professionally dissected) human anatomical specimens. These are prepared from the remains of people who have donated their bodies to UNSW so that students and their peers can study the human body. This is an extraordinarily generous act by these donors and their families and is a special and wonderful privilege. Treating these remains with the utmost care and respect is mandatory, and it is our responsibility to these donors and their families – it is also good ethical practice and is mandated by law.
4. Course schedule and structure

The table below provides a basic overview of the course schedule including the weekly topic, online activities and the due date of assessment tasks. There is a more comprehensive week-by-week timetable available under the 'Key Information and Course Documents' tab on Moodle and located in the student Course Manual.

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Online activities</th>
<th>Assessment Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Pelvis and gluteal region</td>
<td>Practice quiz, VanAT</td>
<td>Quiz 1</td>
</tr>
<tr>
<td>Week 2</td>
<td>Hip and thigh</td>
<td>Practice quiz, VanAT</td>
<td>Quiz 2</td>
</tr>
<tr>
<td>Week 3</td>
<td>Knee and leg</td>
<td>Practice quiz, VanAT</td>
<td>Quiz 3</td>
</tr>
<tr>
<td>Week 4</td>
<td>Ankle and Foot</td>
<td>Practice quiz, VanAT</td>
<td>Quiz 4, TBL assignment 1</td>
</tr>
<tr>
<td>Week 5</td>
<td>Neurovasculature of the lower limb</td>
<td>Practice quiz, VanAT, practice spot test 1</td>
<td>Quiz 5, Spot test 1 (lower limb)</td>
</tr>
<tr>
<td>Week 6</td>
<td>Flexi week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 7</td>
<td>Vertebral column and muscles of the back and abdomen, Pectoral girdle, shoulder and arm</td>
<td>Practice quiz, VanAT, Practice quiz, VanAT</td>
<td>Quiz 6, Quiz 7</td>
</tr>
<tr>
<td>Week 8</td>
<td>Elbow and forearm</td>
<td>Practice quiz, VanAT</td>
<td>Quiz 8</td>
</tr>
<tr>
<td>Week 9</td>
<td>Hand and wrist</td>
<td>Practice quiz, VanAT</td>
<td>Quiz 9</td>
</tr>
<tr>
<td>Week 10</td>
<td>Neurovasculature of the upper limb</td>
<td>Practice quiz, VanAT, Practice theory exam, Practice spot test 2</td>
<td>Quiz 10, TBL assignment 2, Peer review</td>
</tr>
</tbody>
</table>

Spot test 2 (upper limb and back) and the theory exam will be held during the university exam period.

Exam Period: 29 April - 12 May
Supplementary Exam Period: 23 May - 27 May
5. Assessment

5.1 Assessment tasks

a. Continuous assessment quizzes 10%

 Description & feedback & process: This assessment task comprises weekly quizzes that cumulatively are worth 10% of the course mark. These quizzes are administered weekly during tutorials in weeks 1-10 via Moodle. They test practical and theoretical knowledge acquired in the course and the application of this knowledge. Feedback is provided immediately in class and is also available online after the class. Students are required to bring an electronic device for this assessment (e.g., mobile phone, tablet, or computer).

 Continuous assessments are usually in the form of short tests consisting of multiple-choice questions (MCQ). They will be conducted at the beginning of the tutorial classes or be given to students to complete outside of class in weeks 1-10

 Links to learning outcomes: CLO 1, 2, 3

 Assessment weight: 10%

b. Spot tests (mid-term and end-of-term) 35%

 Description & feedback & process: This assessment task contains two parts worth 17.5% each (35% in total). The assessment is a practical spot test that assesses the knowledge and skills acquired during practical classes. Results will be posted on Moodle and feedback will be provided via Moodle and (for the mid-term spot test) during the week 7 practical session.

 Spot tests assess your ability to identify, correctly name and answer questions related to, significant structures in prospected human specimens, models, and radiographs. Spot test 1 will be held during the week 5 Friday practical session and will cover information from seminars and practical sessions for the topics covering the lower limb. Spot test 2 will be held in the examination period and will cover information from seminars and practical sessions for the topics covering the upper limb, vertebral column, and muscles of the back and abdomen.

 Links to learning outcomes: CLO 1, 2, 4

 Assessment weight: 35%

c. Theory exam 30%

 Description & feedback & process: This assessment is worth 30% and comprises of a 2-hour written examination conducted during the examination period. It is designed to assess deeper learning (i.e., the ability to inter-relate information and concepts) and critical thinking by requiring students to apply concepts studied in the course to solve problems related to anatomy. The examination contains a combination of multiple choice and short answer questions that test a student’s understanding of the

 Assessment weight: 30%

d. Team-based learning (TBL) assessments 25%

 Description & feedback & process: This assessment task is designed to assess students' ability to work in teams, collaborate, and apply theoretical knowledge in practical scenarios. It involves group discussions, presentations, and case studies that are conducted in tutorial sessions. The assessment is worth 25% of the course mark.

 Links to learning outcomes: CLO 1, 2, 3

 Assessment weight: 25%
concepts covered in the ENTIRE COURSE. Feedback will be provided to students via their performance mark.

Links to learning outcomes: CLO 1, 2, 3

Assessment weight: 30%

Team Based Learning Assessment

Description & feedback & process: This assessment consists of a series of team tasks. During the first few weeks of the course the class will be divided into small teams of students. Each team will have a mixture of abilities and backgrounds. The use of team-based learning is designed to improve the learning experience through peer-teaching in an interactive discussion facilitated by a tutor. Students will stay in the same teams for the duration of the course and will work together to complete team assessments. Team-based assessments will include three components:

- **Team activities** that focus on application of the week's content. These are administered during weeks 2, 3, 5, 7, and 8 and cumulatively contribute 5% towards the total course mark. Feedback to the questions is provided online via Moodle.

- **Two team assignments** that focus on the application of content and students’ ability to integrate knowledge across different disciplines. The two team assessments are worth 7.5% each (15% in total) and students are required to work together to demonstrate analytical and problem-solving skills as well as effective teamwork. Feedback is provided online via Moodle.

- **Peer review** that reflects on the contribution of team members to the overall success of the team. Peer evaluation assesses effective teamwork, critical thinking and reflective skills and is worth 5% of the total mark in the course. It is completed online in week 11 of the course. Feedback is provided to students via their performance mark.

Links to learning outcomes: CLO 1, 2, 3

Assessment weights: 25%

Further information

UNSW grading system: https://student.unsw.edu.au/grades

5.2 Assessment criteria and standards

<table>
<thead>
<tr>
<th>Assessment Task</th>
<th>FL (0-49%)</th>
<th>PS (50-64%)</th>
<th>CR (65-74%)</th>
<th>DI (75-84%)</th>
<th>HD (85-100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous assessment quizzes</td>
<td>Demonstrates a limited understanding of the required practical and theoretical knowledge of human anatomy to practise in the field of exercise physiology. Displays a limited ability to apply this knowledge to solve problems related to anatomy</td>
<td>Demonstrates a basic understanding of the required practical and theoretical knowledge of human anatomy to practise in the field of exercise physiology. Displays a basic ability to apply this knowledge to solve problems related to anatomy</td>
<td>Demonstrates a good understanding of the required practical and theoretical knowledge of human anatomy to practise in the field of exercise physiology. Displays a good ability to apply this knowledge to solve problems related to anatomy</td>
<td>Demonstrates an excellent understanding of the required practical and theoretical knowledge of human anatomy to practise in the field of exercise physiology. Displays an excellent ability to apply this knowledge to solve problems related to anatomy</td>
<td>Demonstrates an exceptional understanding of the required practical and theoretical knowledge of human anatomy to practise in the field of exercise physiology. Displays an exceptional ability to apply this knowledge to solve problems related to anatomy</td>
</tr>
<tr>
<td>Spot tests</td>
<td>Demonstrates a limited ability to correctly name and answer questions related to significant structures in prosected human specimens, models, and radiographs</td>
<td>Demonstrates a basic ability to correctly name and answer questions related to significant structures in prosected human specimens, models, and radiographs</td>
<td>Demonstrates a good ability to correctly name and answer questions related to significant structures in prosected human specimens, models, and radiographs</td>
<td>Demonstrates an excellent ability to correctly name and answer questions related to significant structures in prosected human specimens, models, and radiographs</td>
<td>Demonstrates an exceptional ability to correctly name and answer questions related to significant structures in prosected human specimens, models, and radiographs</td>
</tr>
<tr>
<td>Theory exam</td>
<td>Exhibits a limited level of deeper learning and critical thinking and a has a limited ability to apply concepts studied in the course to solve problems related to anatomy</td>
<td>Exhibits a basic level of deeper learning and critical thinking and a has a basic ability to apply concepts studied in the course to solve problems related to anatomy</td>
<td>Exhibits a good level of deeper learning and critical thinking and a has a good ability to apply concepts studied in the course to solve problems related to anatomy</td>
<td>Exhibits an excellent level of deeper learning and critical thinking and a has an excellent ability to apply concepts studied in the course to solve problems related to anatomy</td>
<td>Exhibits an exceptional level of deeper learning and critical thinking and a has an exceptional ability to apply concepts studied in the course to solve problems related to anatomy</td>
</tr>
<tr>
<td>TBL assessments</td>
<td>Displays a limited capacity to work effectively as part of a team. Exhibits limited analytical, problem-solving, critical thinking and reflective skills</td>
<td>Displays a basic capacity to work effectively as part of a team. Exhibits basic analytical, problem-solving, critical thinking and reflective skills</td>
<td>Displays a good capacity to work effectively as part of a team. Exhibits good analytical, problem-solving, critical thinking and reflective skills</td>
<td>Displays an excellent capacity to work effectively as part of a team. Exhibits excellent analytical, problem-solving, critical thinking and reflective skills</td>
<td>Displays an exceptional capacity to work effectively as part of a team. Exhibits exceptional analytical, problem-solving, critical thinking and reflective skills</td>
</tr>
</tbody>
</table>
5.3 Submission of assessment tasks

All assessment tasks should be submitted via Moodle, except for spot tests. Spot tests will be conducted face-to-face, and answer papers will be collected at the end of the test.

Late Submission

Late submissions will be penalized at 5% per day capped at five days (120 hours). Students will not be permitted to submit their assessments after this date.

Special Consideration

If you experience a short-term event beyond your control (exceptional circumstances) that impacts your performance in a particular assessment task, you can apply for Special Considerations.

You must apply for Special Consideration before the start of your exam or due date for your assessment, except where your circumstances of illness or misadventure stop you from doing so.

If your circumstances stop you from applying before your exam or assessment due date, you must apply within 3 working days of the assessment, or the period covered by your supporting documentation.

More information can be found on the Special Consideration website.

5.4. Feedback on assessment

During this course feedback may be provided to students in a variety of ways, including but not limited to written comments, verbal advice, formal grades, peer feedback and guided self-evaluations. Channels for providing feedback can be face-to-face, online and by other recorded means, and may be provided to students on either an individual, class or cohort basis. Feedback need not be linked solely to a completed assessment but may also be given generally in connection with learning activities and as part of ongoing assessment tasks.

This is a challenging course. The Course Convenor and other teaching staff will endeavour to make this course interesting, relevant and a rewarding learning experience for you. Problem based questions have been included at the end of each practical in your course manuals – you are encouraged to work through these to provide yourself with feedback on your progress throughout the course.

During the practical sessions, you will have an opportunity to try some practice spot-test-style questions. Answers for these will be provided as feedback to you on your progress and are to be used as a formative assessment tool. Prior to your formal spot tests, you will also be provided with 2 practice online spot tests that will aid your preparation for these assessments. They will provide you with feedback on your ability to identify anatomical structures and your understanding of the relationship between the structure and function of these.

The weekly practice quizzes and continuous assessment quizzes are designed to give you continuous feedback on your progress towards achieving the Course Learning Outcomes. Answers to the practice quizzes will be provided immediately following submission, and feedback to the continuous assessment quizzes will be supplied via a formal grade following the tutorial session. In addition, the Virtual Adaptive Anatomy Tutorials (VAnATs) will be made available via a link in Moodle. These will provide you with immediate feedback and assist you with reflecting on your progression towards achieving the Course Learning Outcomes.
During tutorial classes you will complete a series of team-based learning (TBL) activities and submit 2 TBL assignments. These tasks will require you to demonstrate analytical and problem-solving skills, critical thinking, and effective teamwork. You will be given feedback on your contribution towards the success of the team via the peer review and should reflect on this evaluation of your performance by your peers. Feedback will be provided via Moodle and should be used to assess your progression towards achieving the Course Learning Outcomes.

Prior to your formal theory exam, you will be provided with a practice online theory exam that will aid your preparation for this assessment. Feedback will be given immediately following submission and will assist you to reflect on your progress towards achieving the Course Learning Outcomes.

6. Academic integrity, referencing and plagiarism

The University regards plagiarism as academic misconduct and imposes severe penalties. Evidence of plagiarism in submitted assignments, etc. will be thoroughly investigated and may be penalised by the award of a score of zero for the assessable work. Flagrant plagiarism will be directly referred to the Division of the Registrar for disciplinary action under UNSW rules.

The School of Medical Sciences will not tolerate plagiarism or other forms of academic misconduct. **Academic misconduct includes, but is not limited to:**

- copying answers from another student during a quiz or a spot test.
- using textbooks, lecture or other materials during closed-book tests.
- sharing quiz password information with another student who is absent from class without express authorisation of teaching staff,
- asking a fellow student to sign an attendance roll for you when you are absent or signing an attendance sheet for an absent student.

Referencing is a way of acknowledging the sources of information that you use to research your assignments. You need to provide a reference whenever you draw on someone else’s words, ideas or research. Not referencing other people’s work can constitute plagiarism.

Please use APA referencing style for this course.

Further information about referencing styles can be located at https://student.unsw.edu.au/referencing

Academic integrity is fundamental to success at university. Academic integrity can be defined as a commitment to six fundamental values in academic pursuits: honesty, trust, fairness, respect, responsibility and courage. At UNSW, this means that your work must be your own, and others’ ideas should be appropriately acknowledged. If you don’t follow these rules, plagiarism may be detected in your work.

Further information about academic integrity and plagiarism can be located at:

- [The Current Students site](https://student.unsw.edu.au/plagiarism)

7. Readings and resources

See also Learning Resources.

In addition to the Course Manual, you will need a textbook AND an atlas of human anatomy for this course.

Prescribed Resources:

- One of the following textbooks:

- One of the following anatomical atlases:

Recommended resources:

Online resources

- Virtual Anatomy Adaptive tutorials – accessed via the course Moodle site
- Anatomy videos – accessed via the course Moodle site
- Acland’s anatomy videos – accessed via the UNSW Library (strongly recommended)
- Arnold’s Glossary of Anatomical Terms - See medicalsciences.med.unsw.edu.au/students/undergraduate/learning-resources. For general advice on studying and learning online, see the Guide to Online Study and Transitioning to Online Learning.

Revision Facilities

The Anatomy Museum is located on the ground floor of the Wallace Wurth East. The museum contains a variety of bottled anatomical dissections. Please do not remove the museum jars from the shelves. The museum also contains computers loaded with anatomy software and internet access. Access to the museum is by swipe card and is restricted to anatomy students only, between 8.30 a.m. and 5.30 p.m. Monday to Friday. NO photography is allowed in the Anatomy Museum. Rooms G06/G07 in...
Wallace Wurth East contain computers with a variety of anatomical software and can be used to access the Virtual Adaptive Anatomy Tutorials (VAnATs). Access to these rooms is by student swipe card only. Students may use the computers, **provided the rooms are not required for other classes.**

8. Administrative matters

Student enquiries should be submitted via student portal https://portal.insight.unsw.edu.au/web-forms/

9. Additional support for students

- The Current Students Gateway: https://student.unsw.edu.au/
- Academic Skills and Support: https://student.unsw.edu.au/academic-skills
- **Student Wellbeing and Health** https://www.student.unsw.edu.au/wellbeing
- UNSW IT Service Centre: https://www.myit.unsw.edu.au/services/students
- **UNSW Student Life Hub:** https://student.unsw.edu.au/hub#main-content
- Student Support and Development: https://student.unsw.edu.au/support
- **IT, eLearning and Apps:** https://student.unsw.edu.au/elearning
- Student Support and Success Advisors: https://student.unsw.edu.au/advisors
- **Equitable Learning Services (Formerly Disability Support Unit):** https://student.unsw.edu.au/els
- Transitioning to Online Learning https://www.covid19studyonline.unsw.edu.au/
- Guide to Online Study https://student.unsw.edu.au/online-study
10. Student risk assessments

<table>
<thead>
<tr>
<th>Hazards</th>
<th>Risks</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td>Cold temperature (16°C)</td>
<td>• Wear laboratory coat over appropriate warm clothing</td>
</tr>
<tr>
<td></td>
<td>Sharp bone/plastic</td>
<td>• Wear enclosed shoes with full coverage of the dorsum of the foot</td>
</tr>
<tr>
<td>Biological</td>
<td>Fungi, bacteria (tetanus), hepatitis B and C</td>
<td>• Wear protective eyewear</td>
</tr>
<tr>
<td></td>
<td>Infection</td>
<td>• Wear face mask (if required)</td>
</tr>
<tr>
<td>Chemical</td>
<td>Formaldehyde, Methylated spirits, 2-phenoxyethanol</td>
<td>• Have appropriate immunisation</td>
</tr>
<tr>
<td></td>
<td>Corrosive/Flammable</td>
<td>• Do not eat, drink or smoke in the Anatomy Lab</td>
</tr>
<tr>
<td></td>
<td>Flammable</td>
<td>• Do not place anything (e.g. pens, pencils) into your mouth</td>
</tr>
<tr>
<td></td>
<td>Irritant</td>
<td>• Use disposable gloves when handling wet specimens and do not cross-contaminate models or bones with wet specimens</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use disinfectant and wipes for cleaning models</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Always wash hands with liquid soap and dry thoroughly with paper towel before leaving (hand sanitisers also available)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Low concentrations of chemicals used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Chemicals used in well ventilated area</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Safety Data Sheets for chemicals available</td>
</tr>
</tbody>
</table>

Personal Protective Equipment required

- Lab. Coat
- Closed in footwear
- Safety Glasses
- Gloves
- Mask

Emergency Procedures

In the event of an alarm sounding, stop the practical class and wait for confirmation to evacuate from demonstrators. Then wash your hands and pack up your bags. Follow the instructions of the demonstrators (and/or fire wardens) regarding exits and assembly points.

Clean up and waste disposal

- Cover wet specimens with the towels provided. Make sure that towels do not hang over the edge of the table, because this allows fluid to drip onto the floor. Fluids on the floor are a major safety hazard and should be reported to staff immediately.
- Replace stools under the tables (if applicable).
- Remove your gloves and dispose in the biowaste bins provided.
- Wash your hands and instruments thoroughly with the soap and dry your hands with paper towel.
- Remove your laboratory coat when you leave the Anatomy Lab.

Ethics Approval

This type of practical has been previously considered and approved by the UNSW Human Research Ethics Advisory Panel (HC180115).

Declaration

I have read and understand the safety requirements for this practical class, and I will observe these requirements.

Signature: .. Date:
Student number: ...
Emergency Procedures
In the event of an alarm, follow the instructions of the demonstrator. The initial sound (beep) is advising you to prepare for evacuation and during this time start packing up your things. The second sound (whoop) gives instruction to leave. The Wallace Wurth assembly point is on the lawn in front of the Chancellery. In the event of an injury inform the demonstrator (and/or lab staff). First aider and fire warden contact details are on display by the lifts. There is a wall mounted First Aid Kit located at the end of the G06 Laboratory.

Clean up and waste disposal
No apparatus or chemicals used in these practicals.

Declaration
I have read and understand the safety requirements for this practical class, and I will observe these requirements.

Signature: ... Date: ...
Student number: ..
Hazards

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Physical</th>
<th>Biological</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formaldehyde</td>
<td>Cold temperature</td>
<td>Fungi</td>
</tr>
<tr>
<td>Methylated</td>
<td>Heavy and sharp models (e.g.</td>
<td>Bacteria (tetanus)</td>
</tr>
<tr>
<td>spirits 2-phenoxyethanol</td>
<td>bone/plastic)</td>
<td>Hepatitis B and C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Risks

- Corrosive
- Flammable
- Irritant
- Cold
- Penetrating
- Infection

Controls

- Low concentrations of chemicals used
- Adequate air changes and ventilation are provided
- Safety Data Sheets for chemicals available
- Wear warm clothing as required
- Always wear a laboratory coat
- Wear long-sleeved surgical gown when working with fresh tissue and embalming
- Always wear enclosed shoes with full coverage of the dorsum of the foot
- Wear protective eyewear
- Use QlickSmart blade removal unit to remove scalpel blades
- Ensure appropriate immunisation is current
- Wear a face mask (if required)
- Wear disposable gloves when handling wet specimens and do not cross-contaminate models or bones with wet specimens
- Do bring in any food or drinks
- Do not place anything into your mouth (e.g. pen)
- Use disinfectant provided for cleaning models and surfaces
- Use the provided hand sanitisers regularly
- Wash hands with soap and dry thoroughly before leaving

Personal Protective Equipment required

- Lab Gown
- Closed in footwear
- Safety Glasses
- Gloves
- Mask

Emergency Procedures

- In the event of an alarm, follow the instructions of the academic in charge. The initial sound (beep) is advising you to prepare for evacuation. During this time pack up your personal belongings. The second sound (whoop) gives instruction to leave. Follow the instructions of the academic in charge and the fire warden regarding the assembly point. In the event of an injury inform the academic in charge (and/or lab staff). First aider and fire warden contact details are on display near the entrance/exit doors. There is a wall mounted First Aid Kit located near the entrance/exit doors.

Clean up and waste disposal

- Refer to SWP-MED-MED-00093: GASU - Dissecting embalmed cadaveric material and SWP-MED-MED-00094: GASU - Recording and tracking dissection and waste.
- Fluids on the floor are a major safety hazard and should be reported to staff immediately.
- Replace stools under the tables (if applicable).
- Remove your gloves and dispose in the biowaste bins provided.
- Wash your hands thoroughly with the soap and dry your hands with paper towel.
- Remove your lab gown when you leave the Mortuary.

Ethics Approval

This type of practical has been previously considered and approved by the UNSW Human Research Ethics Advisory Panel (HC180115).

Declaration
I have read and understand the safety requirements for this practical class, and I will observe these requirements.

Signature:……………………………………………….. Date:……………………………..
Student number: …………………………………………………..