MATHEMATICS ENRICHMENT CLUB. ${ }^{1}$
 Problem Sheet 11, August 2, 2012

1. Solve $\frac{x+3 y}{2 x+5 y}=\frac{4}{7}$.
2. Find a number less than 100 which is increased by 20% when the digits are reversed.
3. (a) Verify that

$$
\begin{aligned}
x^{15}-1 & =\left(x^{3}-1\right)\left(x^{12}+x^{9}+x^{6}+x^{3}+1\right) \\
& =\left(x^{5}-1\right)\left(x^{10}+x^{5}+1\right)
\end{aligned}
$$

(b) Hence factor $2^{15}-1$ as a product of prime factors.
(c) Can you factorise $2^{15}+1$ as a product of prime factors?
4. Suppose that P is a point inside a rectangle $A B C D$ with $A B=15 \mathrm{~cm}$, and $A D=10 \mathrm{~cm}$. If $P A=14 \mathrm{~cm}$ and $P B=11 \mathrm{~cm}$, find $P D$ in surd form.
5. Find all positive integers m and n such that $3 m-1$ is a multiple of n and $3 n-1$ is a multiple of m.
(Hint: Suppose $m \leq n$, then n divides $3 m-1<3 m \leq 3 n$.)
6. (a) Let M be the midpoint of the side $B C$ of the triangle $A B C$ and let N be the midpoint of $A C$. Suppose that $A M$ and $B N$ meet at S. Show that

$$
A S: S M=B S: S N=2: 1
$$

(b) Hence show that the medians of a triangle are concurrent.
7. (a) Let M be the midpoint of the side $A B$ in the triangle $A B C$. If $C M$ has length h, prove that

$$
2\left(a^{2}+b^{2}\right)=c^{2}+4 h^{2}
$$

This is known as Apollonius' theorem.
(b) Show how to draw a triangle knowing only the lengths of the three medians h, k and ℓ. (You can either use (i), or find a better way.)

[^0]
[^0]: ${ }^{1}$ Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.

