MATHEMATICS ENRICHMENT CLUB. ${ }^{1}$
 Problem Sheet 15, September 3, 2012

1. In how many ways can we change $\$ 10$ into 50 cent and 20 cent coins, with at least one of each coin being used.
2. If $x=\sqrt{1+\sqrt{1+\sqrt{2}}}$ find the exact value of $x^{4}-2 x^{2}$.
3. A quadrilateral in which a circle can be drawn which touches each of the four faces is called a circumscribable quadrilateral. If r is the radius of the circle and s is half the perimeter of the quadrilateral, prove that the area of the quadrilateral is $r s$.
4. Use the fact that $2 x y=(x+y)^{2}-x^{2}-y^{2}$ to show that

$$
2(b-c)(c-a)+2(c-a)(a-b)+2(a-b)(b-c) \leq 0
$$

for all real numbers a, b, c.
5. (a) Find all positive integers a, b, c such that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$ is as large as possible but less than $\frac{1}{2}$.
(b) Find all positive integers a, b, c, d such that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}$ is as large as possible but less than 1.
6. Suppose the median from the vertex C of a triangle $A B C$ has length $\frac{1}{2} A B$. Show that the triangle is right-angled at C.
7. Let P be a point outside a circle with diameter $A B$ and let Q be a point inside it. Prove that $\angle A P B$ is acute and that $\angle A Q B$ is obtuse.

Senior Questions.

1. Let $C(x)=\frac{e^{x}+e^{-x}}{2}$ and $S(x)=\frac{e^{x}-e^{-x}}{2}$. Show that $\frac{d^{2} C}{d x^{2}}=C(x), \frac{d^{2} S}{d x^{2}}=S(x)$ and $C(x)^{2}-S(x)^{2}=1$.

[^0]2. Prove by induction that the sum to k terms of
$$
1^{2}-3^{2}+5^{2}-7^{2}+\ldots .
$$
equals $-8 n^{2}$ when $k=2 n$ and $8 n^{2}+8 n+1$ when $k=2 n+1$.
3. In $\triangle A B C$ prove that $b^{2}(\cot A+\cot B)=c^{2}(\cot A+\cot C)$. (Hint: You might begin by considering the area of the triangle in two different ways.)

[^0]: ${ }^{1}$ Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.

