MATHEMATICS ENRICHMENT CLUB. ${ }^{1}$ Problem Sheet 16, September 10, 2012

1. A box of apples costs $\$ 4$, a box of oranges costs $\$ 3$ and a box of lemons costs $\$ 2$. A person buys 8 boxes of fruit at a cost of $\$ 23$. If at least one box of each kind of fruit is bought, find the largest possible number of boxes of apples.
2. Suppose a, b are positive real numbers. Use the diagram below to give a geometric proof that $a^{2}=(a-b)^{2}+2 a b-b^{2}$.

Figure 1: Two squares of length a and b
3. The perimeter of a rectangle is 20 cm what is the least value of the diagonal?
4. Consider the two sequences $x_{0}=1, x_{1}=1, x_{n+1}=x_{n}+2 x_{n-1}$ and $y_{n}=8 n+1$. Prove that for $n>1$ these two sequences never have a common term.
5. Use the fact that $a^{2}+b^{2} \geq 2 a b$ for any positive real numbers a, b to show that, for a, b, c positive real numbers, $\frac{a^{2}+b^{2}+c^{2}}{3} \geq\left(\frac{a+b+c}{3}\right)^{2}$.
6. (a) Paul measured all 6 edges of a tetrahedron $A B C D$ and found them to be $1,3,4,5,6,8$ cm . Can this be correct?

[^0](b) Paul then measured the edges to be $2,3,4,5,6,8$. If $A B=2$ what is the length of $C D$?
7. A circle is drawn which touches $B C$ in triangle $A B C$ and also touches the two sides $A B$ and $A C$ produced at T and S respectively. Let O be the centre of this circle.

(a) Explain why $O B$ bisects the angle $T B C$.
(b) Prove that the length of $A T$ equals half the perimeter of the triangle $A B C$.

0.1 Senior Questions.

1. Prove that

$$
\cos ((n+2) \theta)=2 \cos ((n+1) \theta) \cos \theta-\cos (n \theta)
$$

for each integer $n \geq 0$.
Hence express $\cos 5 \theta$ in terms of powers of $\cos \theta$.
2. For every positive real number $n>1$, prove that

$$
2 \sqrt{n+1}-2 \sqrt{n}<\frac{1}{\sqrt{n}}<2 \sqrt{n}-2 \sqrt{n-1}
$$

3. Use the result in Q2 to prove that

$$
2(\sqrt{N+1}-1)<\sum_{n=1}^{N} \frac{1}{\sqrt{n}}<2 \sqrt{N}
$$

and deduce that the sum of the first million terms of

$$
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots
$$

is between 1998 and 2000.

[^0]: ${ }^{1}$ Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.

