MATHEMATICS ENRICHMENT CLUB. ${ }^{1}$
 Problem Sheet 4, May 21, 2012

1. If $f(n)=(n-1) f(n-1)$ and $f(1)=1$ find $f(4)$.
2. The product of the ages in years of two adults is 770 . What is the sum of their ages?
3. (a) How many positive integers are there ≤ 100 which have no factors, except 1 , in common with $100 ?$
(b) What is their sum?
4. If $x_{1}=3$, the recurrence $x_{n+1}=x_{n}^{2}-10 x_{n}$, gives the sequence $3,-21,651,417291 \ldots$ and the numbers increase without bound. Find all the values for x_{1} so that the sequence does NOT increase without bound.
5. Solve the simultaneous equations:

$$
\begin{aligned}
& x+y z=2 \\
& y+x z=2 \\
& z+x y=2 .
\end{aligned}
$$

6. Two circles C_{1}, C_{2} with centres O_{1}, O_{2} are externally tangent at the point P. A straight line through P meets C_{1}, C_{2} respectively at A and B. Show that the tangents to the circles at A and B are parallel.
7. Let $A B C D$ be a trapezium with $A B \| C D$. Let P be the intersection of the diagonals $A C$ and $B D$.
(a) Show that the triangles $A P D$ and $B P C$ have the same area.
(b) Given that $A P B$ has area $1 \mathrm{~cm}^{2}$ and that $A P D$ has area $4 \mathrm{~cm}^{2}$, find the area of $A B C D$.
[^0]
Senior Questions.

1. Find $\int \frac{1}{x+\sqrt{x}} d x$.
2. Find $\lim _{n \rightarrow \infty} \frac{n!}{n^{n}}$.
3. Prove that

$$
1 \times 3 \times 5 \times \ldots \times(2 n-1)=\frac{(2 n)!}{2^{n} n!}
$$

[^0]: ${ }^{1}$ Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.

