MATHEMATICS ENRICHMENT CLUB. ${ }^{1}$ Problem Sheet 5, May 28, 2012

1. Two classes of 20 and 30 students average 66% and 56% respectively on an examination. What is the average for all the students on the exam?
2. A mathematics test has 5 questions on each of which people can score $0,1,2$ or 3 marks. How many ways can a student receive a total of 12 marks for the test?
3. Mark the hours on a clockface with centre O with the letters $A_{1}, A_{2}, \ldots, A_{12}$.
(a) Find all the angles $X Y O$, where X and Y are any hours.
(b) What is the ratio of the areas of the quadrilaterals $A_{12} A_{2} A_{6} A_{8}$ and $A_{12} A_{3} A_{6} A_{9}$?
4. Find infinitely many integers x such that

$$
\sqrt[3]{x+\sqrt{x^{2}+1}}+\sqrt[3]{x-\sqrt{x^{2}+1}}
$$

is an integer.
5. (a) Prove that $a+b \geq 2 \sqrt{a b}$ for any positive real numbers a, b.
(b) Deduce that for x, y, z positive, $(x+y)(x+z)(y+z) \geq 8 x y z$.
6. In the triangle $A B C$, it is given that $\angle A B C=140^{\circ}$. Let D be a point on $A C$ and E a point on $A B$ such that the three triangles $A E D, E D B$ and $D B C$ are all isosceles, with their vertices at E, D and B respectively. Find all the angles of the triangle $A B C$.
7. Let $A B C D$ be a trapezium and with $A B \| C D$. Let M, N be the midpoints of $A D$ and $B C$ respectively. Show that $M N=\frac{1}{2}(A B+C D)$.

[^0]
Senior Questions.

1. Let $f(x)=\left(1+\frac{1}{x}\right)^{x}$.
(a) Prove that $\frac{f^{\prime}(x)}{f(x)}=\log \left(1+\frac{1}{x}\right)-\frac{1}{1+x}$.
(b) By considering the area under the curve $y=\frac{1}{t}$ for t from 1 to $1+\frac{1}{x}$, show that $\log \left(1+\frac{1}{x}\right)>\frac{1}{1+x}$ and deduce that $f(x)$ is increasing.
2. Suppose $a>b>0$. Find $\lim _{n \rightarrow \infty}\left(a^{n}+b^{n}\right)^{\frac{1}{n}}$.
3. By considering $\cos (A+B)+\sin (A-B)=0$ find the general solution (for θ) of $\cos n \theta+\sin m \theta=0$.

[^0]: ${ }^{1}$ Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.

