MATHEMATICS ENRICHMENT CLUB. ${ }^{1}$ Problem Sheet 6, June 4, 2012

1. A parallelogram $A B C D$ has $B C=4 \mathrm{~cm}$ and $C D=8 \mathrm{~cm}$. The point A is 3 cm above $C D$. Find the length of the perpendicular from A to $B C$.
2. If a, b, c are real numbers and $a>b$, which of the following must be true?
(a) $\frac{1}{a}>\frac{1}{b}$
(b) $a c>b c$
(c) $a^{2}>b^{2}$
(d) $a+c>b+c$
(e) $\frac{1}{a}<\frac{1}{b}$.
3. (a) Verify that $x=170, y=39$ satisfy $x^{2}=19 y^{2}+1$.
(b) Hence find integers x and y such that $x^{2}=171 y^{2}+1$ and $x^{2}=3211 y^{2}+1$.
4. A rectangle has perimeter 20 cm . What is the least value of the diagonal?
5. From the point (x, y) we can move a counter to any one of the following points:

$$
(2 x, y),(x, 2 y)
$$

or

$$
(x-y, y) \text { if } x>y, \quad(x, y-x) \text { if } y>x .
$$

Starting from $(1,1)$ can you see a rule to determine which points in the plane can be reached using the rules above?
6. The line joining a vertex of a triangle to the midpoint of the opposite side is called a median. Let m_{A} denote the median in triangle $A B C$ from A to $B C$.
(a) Show that $A B+A C>2 m_{A}$. (Hint: Think about parallelograms)
(b) Deduce that $A B+A C+B C>m_{A}+m_{B}+m_{C}$.
7. Given a circle K with centre O and diameter $A B$, let C be any point on K.
(a) Prove that $\angle A C B=90^{\circ}$.
(b) Describe how to construct a right-angled triangle $A C B$ if we are given its hypotenuse $A B$ and the length of the perpendicular dropped from C to $A B$.

[^0]
Senior Questions.

1. Let $S(x)=\frac{e^{x}-e^{-x}}{2}$ and $C(x)=\frac{e^{x}+e^{-x}}{2}$.
(a) Show that $(C(x))^{2}-(S(x))^{2}=1$.
(b) If $S(x)=\tan \theta$, express $C(x)$ in terms of θ.
2. Find the integral

$$
\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos ^{4} \theta}{\sin ^{2} \theta} d \theta
$$

3. A die is thrown n times. Show that if the probability that a 6 appears at least once is greater than $\frac{1}{2}$, then $n>\frac{\log 2}{\log 6-\log 5}$.

[^0]: ${ }^{1}$ Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.

