MATHEMATICS ENRICHMENT CLUB.
Problem Sheet 6, June 4, 2012

1. A parallelogram $ABCD$ has $BC = 4$ cm and $CD = 8$ cm. The point A is 3 cm above CD. Find the length of the perpendicular from A to BC.

2. If a, b, c are real numbers and $a > b$, which of the following must be true?

 (a) $\frac{1}{a} > \frac{1}{b}$
 (b) $ac > bc$
 (c) $a^2 > b^2$
 (d) $a + c > b + c$
 (e) $\frac{1}{a} < \frac{1}{b}$.

3. (a) Verify that $x = 170, y = 39$ satisfy $x^2 = 19y^2 + 1$.
 (b) Hence find integers x and y such that $x^2 = 171y^2 + 1$ and $x^2 = 3211y^2 + 1$.

4. A rectangle has perimeter 20cm. What is the least value of the diagonal?

5. From the point (x, y) we can move a counter to any one of the following points:

 $(2x, y), (x, 2y)$

 or

 $(x - y, y)$ if $x > y$,
 $(x, y - x)$ if $y > x$.

 Starting from $(1, 1)$ can you see a rule to determine which points in the plane can be reached using the rules above?

6. The line joining a vertex of a triangle to the midpoint of the opposite side is called a median. Let m_A denote the median in triangle ABC from A to BC.

 (a) Show that $AB + AC > 2m_A$. (Hint: Think about parallelograms)
 (b) Deduce that $AB + AC + BC > m_A + m_B + m_C$.

7. Given a circle K with centre O and diameter AB, let C be any point on K.

 (a) Prove that $\angle ACB = 90^\circ$.
 (b) Describe how to construct a right-angled triangle ACB if we are given its hypotenuse AB and the length of the perpendicular dropped from C to AB.

1 Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.
Senior Questions.

1. Let \(S(x) = \frac{e^x - e^{-x}}{2} \) and \(C(x) = \frac{e^x + e^{-x}}{2} \).

 (a) Show that \((C(x))^2 - (S(x))^2 = 1 \).

 (b) If \(S(x) = \tan \theta \), express \(C(x) \) in terms of \(\theta \).

2. Find the integral

\[
\int_{\pi/4}^{\pi/2} \frac{\cos^4 \theta}{\sin^2 \theta} \, d\theta.
\]

3. A die is thrown \(n \) times. Show that if the probability that a 6 appears at least once is greater than \(\frac{1}{2} \), then \(n > \frac{\log 2}{\log 6 - \log 5} \).