

Never Stand Still

Faculty of Science

School of Mathematics and Statistics

MATHEMATICS ENRICHMENT CLUB.¹ Problem Sheet 6, June 4, 2012

- 1. A parallelogram ABCD has BC = 4 cm and CD = 8 cm. The point A is 3 cm above CD. Find the length of the perpendicular from A to BC.
- 2. If a, b, c are real numbers and a > b, which of the following must be true?

(a)
$$\frac{1}{a} > \frac{1}{b}$$
 (b) $ac > bc$ (c) $a^2 > b^2$ (d) $a + c > b + c$ (e) $\frac{1}{a} < \frac{1}{b}$

- 3. (a) Verify that x = 170, y = 39 satisfy $x^2 = 19y^2 + 1$.
 - (b) Hence find integers x and y such that $x^2 = 171y^2 + 1$ and $x^2 = 3211y^2 + 1$.
- 4. A rectangle has perimeter 20cm. What is the least value of the diagonal?
- 5. From the point (x, y) we can move a counter to any one of the following points:

(2x, y), (x, 2y)

or

$$(x - y, y)$$
 if $x > y$, $(x, y - x)$ if $y > x$.

Starting from (1, 1) can you see a rule to determine which points in the plane can be reached using the rules above?

- 6. The line joining a vertex of a triangle to the midpoint of the opposite side is called a **median**. Let m_A denote the median in triangle ABC from A to BC.
 - (a) Show that $AB + AC > 2m_A$. (Hint: Think about parallelograms)
 - (b) Deduce that $AB + AC + BC > m_A + m_B + m_C$.
- 7. Given a circle K with centre O and diameter AB, let C be any point on K.
 - (a) Prove that $\angle ACB = 90^{\circ}$.
 - (b) Describe how to construct a right-angled triangle ACB if we are given its hypotenuse AB and the length of the perpendicular dropped from C to AB.

¹Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.

Senior Questions.

- 1. Let $S(x) = \frac{e^x e^{-x}}{2}$ and $C(x) = \frac{e^x + e^{-x}}{2}$.
 - (a) Show that $(C(x))^2 (S(x))^2 = 1$.
 - (b) If $S(x) = \tan \theta$, express C(x) in terms of θ .
- 2. Find the integral

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos^4\theta}{\sin^2\theta} \, d\theta.$$

3. A die is thrown *n* times. Show that if the probability that a 6 appears at least once is greater than $\frac{1}{2}$, then $n > \frac{\log 2}{\log 6 - \log 5}$.