Solution Sheet 11, August 2, 2012

Answers

1. There are infinitely many solutions: all possible values for x, so long as for each x, y is chosen to be equal to x.
2. $45 \times \frac{6}{5}=54$
3. (a) Easy
(b) Using the equations, $\left(2^{3}-1\right)=7$ and $\left(2^{5}-1\right)=31$ are both factors, and $\frac{2^{15}-1}{7 * 31}=151$ is the other prime factor.
(c) Since

$$
\begin{aligned}
x^{15}+1 & =\left(x^{3}+1\right)\left(x^{12}-x^{9}+x^{6}-x^{3}+1\right) \\
& =\left(x^{5}+1\right)\left(x^{10}-x^{5}+1\right)
\end{aligned}
$$

then both $x^{3}+1=9$ and $2^{5}+1=33$ are factors of $x^{15}+1$, and $\frac{2^{15}+1}{99}=331$ is the other prime factor.
4. By Heron's Formula, the area of triangle $A P B$ is

$$
\sqrt{s *(s-A P) *(s-P B) *(s-A B)}=30 \sqrt{6}
$$

where s is half the perimeter of $A P B$. Hence the perpendicular distance of P from $A B$ is $4 \sqrt{6}$. Construct a right-angled triangle $A P Q$ where Q is on $A B$ and $\angle A Q P=90$. Pythagoras' theorem tells us the distance $A Q=10$. Hence by Pythagoras' theorem again $D P=\sqrt{10^{2}+(4 \sqrt{6})^{2}}=\sqrt{196}=14$
5. Since $3 m-1$ is a multiple of $n: 3 n \geq 3 m>3 m-1=k n$ for some k. This means that k can only be 1 or 2 . When $k=1,3 m-1=n$ which, in conjunction with $3 n-1=j m$ for some j, yields values of $(m, n)=(4,11),(2,5)$ or $(1,2)$. Similarly when $k=2$ we get $(m, n)=(5,7)$ or $(1,1)$.

