MATHEMATICS ENRICHMENT CLUB. ${ }^{1}$ Solution Sheet 1, May 7, 2012

Answers

1. Either $p \mid q$ or $p \mid q-1$ (1st condition), and either $q \mid p$ or $q \mid p+1$ (2nd condition). We have the following scenarios:

	$p m=q$	$p m=q-1$
$n q=p$	$p=q$	$m n q=q-1$ implies $p=1=q$
$n q=p+1$	$p m n=p+1$ implies $p=1=q$	$p m+n q=p+q$ implies $p=1, q=2$

2. Easy
3. Complete the square, then take difference of two squares. Answers are $\left(x^{2}-2 x+\right.$ 2) $\left(x^{2}+2 x+2\right)$ and $\left(x^{2}-\sqrt{(2)} x+1\right)\left(x^{2}+\sqrt{(2)} x+1\right)$.
4. Suppose $x \leq y \leq z$. Then $5 / 8=1 / x+1 / y+1 / z \leq 3 / x$, so $x<5$. This means there are only 4 possible values for x.
$x=1$ No solutions.
$x=2$ Solve $1 / y+1 / z=1 / 8$. So $8 \leq y \leq 2 * 8$. Testing y values in this range gives: $(9,72),(10,40)$.
$x=3$ Solve $1 / y+1 / z=7 / 24$. Since $1 / 4<1 / y+1 / z<1 / 3$. So $3 \leq y \leq 2 * 4$, Answers $(4,24),(6,8)$.
$x=4$ Solve $1 / y+1 / z=3 / 8$. Answers: $(3,24),(4,8)$.
5. You can check that the angles are the same for these triangles:

[^0]
[^0]: ${ }^{1}$ Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.

