Errata: Solution Sheet 4, May 25, 2012

Answers

1. $f(4)=6$. Generally, $f(n)=(n-1)$!
2. $(22) *(35)=770$ is the only combination where both numbers are over 18 .
3. (a) $50+20-10=60$. This is the number of numbers with a factor in common with 100. So the answer should be $100-60=40$.
(b) $25 * 102+10 * 105-5 * 110=3050$. This is the sum of numbers with a factor in common with 100 . So the answer should be $1+2+\cdots+100-3050=2000$
4. $x=0,11$ are the 'fixed points' (solve $x_{n+1}=x_{n}$), but there are many ways to get to either 0 or 11 . Rewrite the recurrence relation so that $x_{n+1}=\left(x_{n}-5\right)^{2}-25$. Then you can write x_{n+1} in terms of x_{0} :

$$
x_{n+1}=\left(\left(\left(x_{0}-5\right)^{2}-30\right)^{2}-\ldots-30\right)-25
$$

Where there are $n-130$'s. So if $x_{n+1}=0$, re-arrangement gives

$$
x_{0}=5 \pm \sqrt{30+\sqrt{30+\ldots \sqrt{30 \pm 5}}}
$$

Similarly for $x_{n+1}=11$

$$
x_{0}=5 \pm \sqrt{30+\sqrt{30+\ldots \sqrt{30 \pm 6}}}
$$

5. $x=y=z$, so solve $x+x^{2}=2$.
