Solution Sheet 9, May 28, 2012

Answers

1.

$$
\frac{20 \times \frac{66}{100}+30 \times \frac{56}{100}}{50}=\frac{3}{5}=60 \%
$$

2. Expand $\left(1+x+x^{2}+x^{3}\right)^{5}$ and take the coefficient of x^{12}
3. (a) Each slice of the clock is 30°. Hence $\angle X O Y=30 n$ for $n=0,1, \cdots 11$. Triangle $X Y O$ is isosceles, so $\angle X Y O=\angle Y X O=\frac{|180-30 n|}{2}$.
(b) Let r be the clock radius. Then area $A_{12} A_{2} A_{6} A_{8}=\sqrt{3} r^{2}$, and area $A_{12} A_{3} A_{6} A_{9}=$ $2 r^{2}$. Hence the ratio is $\sqrt{3} / 2$.
4. Let $n=\sqrt[3]{x+\sqrt{x^{2}+1}}+\sqrt[3]{x-\sqrt{x^{2}+1}}$. Then $x=\frac{n^{3}-3 n}{2}$. Any integer value of n will result in a corresponding integer value for x.
5. (a) Start with $a+b>2 \sqrt{a b}$, and work your way backwards until you get $(a-b)^{2}>0$
(b) Use part a three times with differnet values for a, b chosen from x, y, z.
