

Never Stand Still

Faculty of Science

School of Mathematics and Statistics

Solution Sheet 9, May 28, 2012

Answers

1.

$$\frac{20 \times \frac{66}{100} + 30 \times \frac{56}{100}}{50} = \frac{3}{5} = 60\%$$

- 2. Expand $(1 + x + x^2 + x^3)^5$ and take the coefficient of x^{12}
- 3. (a) Each slice of the clock is 30°. Hence $\angle XOY = 30n$ for $n = 0, 1, \dots 11$. Triangle XYO is isosceles, so $\angle XYO = \angle YXO = \frac{|180-30n|}{2}$.
 - (b) Let r be the clock radius. Then area $A_{12}A_2A_6A_8 = \sqrt{3}r^2$, and area $A_{12}A_3A_6A_9 = 2r^2$. Hence the ratio is $\sqrt{3}/2$.
- 4. Let $n = \sqrt[3]{x + \sqrt{x^2 + 1}} + \sqrt[3]{x \sqrt{x^2 + 1}}$. Then $x = \frac{n^3 3n}{2}$. Any integer value of n will result in a corresponding integer value for x.
- 5. (a) Start with $a + b > 2\sqrt{ab}$, and work your way backwards until you get $(a b)^2 > 0$
 - (b) Use part a three times with different values for a, b chosen from x, y, z.