Solution Sheet 6, June 4, 2012

Answers

1. 6
2. only c and d are always true.
3. $x=170, y=13$ and $x=170, y=3$
4. $5 \sqrt{2}$
5. Notice that using only the rules 1 and $2((2 x, y)$ and ($x, 2 y$) resp.) we can obtain all points of the form $\left(2^{n}, 2^{m}\right)$ and $\operatorname{gcd}\left(2^{n}, 2^{m}\right)=2^{|m-n|}$: a power of 2 . Furthermore, the operations $(x-y, y)$ and $(x, y-x)$ (as used in Euclid's algorithm), preserve the gcd. Hence points with a gcd that is not a power of 2 cannot be reached.
Conversely, these are the only points that can be reached. If $\operatorname{gcd}(a, b)=2^{m}$, then $a=2^{m} a^{\prime}, b=2^{n} b^{\prime}$ with $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$. The point (a, b) can be reached from $\left(a^{\prime}, b^{\prime}\right)$ using rules 1 and 2 (apply each m and n times resp.).

Assume $a^{\prime}<b^{\prime}$. Since both a^{\prime}, b^{\prime} are odd. $a^{\prime}+b^{\prime}$ is even, and can be reached from the point $\left(a^{\prime}, \frac{a^{\prime}+b^{\prime}}{2}\right)$. Notice that this point is closer to $(1,1)$ than $\left(a^{\prime}, b^{\prime}\right)$ was.
Continue this process until $a^{\prime}=b^{\prime}$, since $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$, this point is $(1,1)$.

