MATHEMATICS ENRICHMENT CLUB. ${ }^{1}$ Problem Sheet 1, May 7, 2013

1. Laurie sold two cars for $\$ 25000$ each. One he sold at a 20% profit and the other at a 20% loss. How much did he gain or lose ?
2. A number n has exactly 12 divisors. Given that n is divisible by $1,2,3,4,5$ and 6 find a possible value of n. Is it the only one? Explain.
3. Without using a calculator, which is larger 31^{24} or 257^{15}.
4. Let $S_{n}=2 n(2 n-1)(2 n-2) \ldots(n+1)$. For example, $S_{3}=6 \times 5 \times 4=120$.
(a) What is the power of 2 in the prime factorisatoin of S_{n} for $n=2,3,4 \ldots$?
(b) Make a conjecture based on(i) and prove it.
5. Without using a calculator, show that

$$
\sqrt[3]{5 \sqrt{13}+18}-\sqrt[3]{5 \sqrt{13}-18}=3
$$

(Hint: Let $x=a-b$ and cube.)
6. Let $A B C$ be a triangle and D, E points on $A B, B C$ respectively, and S be the intersection of $A E$ and $C D$. If $A D=D B$ and $B E: E C=2: 1$, find the ratios $C S: S D$ and $A S: S E$.
7. (a) Let P be an interior point in an equilateral triangle $A B C$. Prove that we can always form a triangle with sides of length $A P, B P, C P$. (That is, we have to show that the sum of any two of these lengths is larger than the remaining one.)
(b) Give an example of a triangle and point inside it for which the above result is not true.

[^0]
[^0]: ${ }^{1}$ Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.

