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1. Find all the positive integers such that ab = 3a + 3b.

2. Let K be the circumcircle through the vertices of a rectangle with sides a and b. On
each side of the rectangle construct a semicircle. This will give four crescents formed
between these semicircles and K. What is the sum of the areas of the four crescents?

3. Suppose that two non-parallel straight lines & and ¢ meet at a point P which is not
on the page of my book. Construct a line which would (if P did lie on the page) bisect
the angle between the lines and pass through P.

4. Suppose the last digit of 2% + zy + y? is zero, and x and y are positive integers. Prove
that the last two digits of 22 + 2y + y? are both zero.

5. (a) Use your calculator to show that (2!)2 < (31)3 < (4!)i.
(b) Prove that for every integer n > 0, (n!)w < ((n + 1)!)#1.

6. (a) There are 128 coins of two different weights, 64 of each. How can one always find
two different coins by performing no more than 7 weighings on a regular balance?

(b) There are eight coins of two different weights, four of each. How can one always
find two different coins by performing two weighings on a regular balance?

Senior Questions

1. The function f(x) = z* has an inverse g(z) provided we restrict the domain of f to
x > 1. Find a formula for the derivative of g(x) in terms of = and g(z).

2. The exponential function is defined as being the solution, y(z), to the differential
equations

d
y(z) = d—y such that y(0) = 1.
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!Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres , Macquarie Uni.



