MATHEMATICS ENRICHMENT CLUB. ${ }^{1}$
 Problem Sheet 15, September 3, 2013

1. Find all the positive integers such that $a b=3 a+3 b$.
2. Let K be the circumcircle through the vertices of a rectangle with sides a and b. On each side of the rectangle construct a semicircle. This will give four crescents formed between these semicircles and K. What is the sum of the areas of the four crescents?
3. Suppose that two non-parallel straight lines k and ℓ meet at a point P which is not on the page of my book. Construct a line which would (if P did lie on the page) bisect the angle between the lines and pass through P.
4. Suppose the last digit of $x^{2}+x y+y^{2}$ is zero, and x and y are positive integers. Prove that the last two digits of $x^{2}+x y+y^{2}$ are both zero.
5. (a) Use your calculator to show that $(2!)^{\frac{1}{2}}<(3!)^{\frac{1}{3}}<(4!)^{\frac{1}{4}}$.
(b) Prove that for every integer $n>0,(n!)^{\frac{1}{n}}<((n+1)!)^{\frac{1}{n+1}}$.
6. (a) There are 128 coins of two different weights, 64 of each. How can one always find two different coins by performing no more than 7 weighings on a regular balance?
(b) There are eight coins of two different weights, four of each. How can one always find two different coins by performing two weighings on a regular balance?

Senior Questions

1. The function $f(x)=x^{x}$ has an inverse $g(x)$ provided we restrict the domain of f to $x \geq 1$. Find a formula for the derivative of $g(x)$ in terms of x and $g(x)$.
2. The exponential function is defined as being the solution, $y(x)$, to the differential equations

$$
y(x)=\frac{d y}{d x}, \quad \text { such that } y(0)=1
$$

Prove $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots$.

[^0]
[^0]: ${ }^{1}$ Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.

