1. Find all the positive integers such that \(ab = 3a + 3b \).

2. Let \(K \) be the circumcircle through the vertices of a rectangle with sides \(a \) and \(b \). On each side of the rectangle construct a semicircle. This will give four crescents formed between these semicircles and \(K \). What is the sum of the areas of the four crescents?

3. Suppose that two non-parallel straight lines \(k \) and \(\ell \) meet at a point \(P \) which is not on the page of my book. Construct a line which would (if \(P \) did lie on the page) bisect the angle between the lines and pass through \(P \).

4. Suppose the last digit of \(x^2 + xy + y^2 \) is zero, and \(x \) and \(y \) are positive integers. Prove that the last \textbf{two} digits of \(x^2 + xy + y^2 \) are both zero.

5. (a) Use your calculator to show that \((2!)^{\frac{1}{2}} < (3!)^{\frac{1}{3}} < (4!)^{\frac{1}{4}}\).

 (b) Prove that for every integer \(n > 0 \), \((n!)^{\frac{1}{n}} < ((n + 1)!)^{\frac{1}{n+1}}\).

6. (a) There are 128 coins of two different weights, 64 of each. How can one always find two different coins by performing no more than 7 weighings on a regular balance?

 (b) There are eight coins of two different weights, four of each. How can one always find two different coins by performing two weighings on a regular balance?

Senior Questions

1. The function \(f(x) = x^x \) has an inverse \(g(x) \) provided we restrict the domain of \(f \) to \(x \geq 1 \). Find a formula for the derivative of \(g(x) \) in terms of \(x \) and \(g(x) \).

2. The exponential function is defined as being the solution, \(y(x) \), to the differential equations

\[
y(x) = \frac{dy}{dx}, \quad \text{such that } y(0) = 1.
\]

Prove \(e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots \).

1Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.