MATHEMATICS ENRICHMENT CLUB. ${ }^{1}$ Problem Sheet 3, May 21, 2013

1. The perimeter of a base of a rectangular brick with integer sides is 18 cm , whilst its volume is $42 \mathrm{~cm}^{3}$. What is its height?
2. Calculate

$$
\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right) \ldots\left(1-\frac{1}{2008}\right) .
$$

3. Find the smallest positive integer whose square ends in (a) 09 and (b) 9009.
4. Show that if a, b are positive numbers such that $a b \leq 1$ then

$$
\frac{a}{b+1}+\frac{b}{a+1}+(1-a)(1-b) \leq 1 .
$$

5. Suppose we have the numbers $x_{0}=0, x_{1}=1$ and $x_{n+1}=x_{n}+2 x_{n-1}$ for $n \geq 2$.
(a) Write down the numbers x_{n} for $n=2,3,4,5,6$.
(b) Show that there is no n for which $x_{n}=1999$. (Hint: Use modulo 8 arithmetic).
(c) Show that $x_{n}=\frac{2^{n}-(-1)^{n}}{3}$ satisfies the equation.
6. In $\triangle A B C$, extend the sides $A B$ and $A C$ and draw a circle outside the triangle which touches $B C$ and these two produced sides. This circle is called the escribed circle of the triangle.
(a) Show that $r_{1}=\frac{A}{s-a}$, where r_{1} is the radius of the escribed circle, A is the area of $A B C, a$ is the length of $B C$ and s is half the perimeter of $A B C$.
(b) Show that $\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}=\frac{1}{r}$, where r_{2}, r_{3} are the radii of the other two escribed circles and r is the radius of the incircle (recall last weeks result.)
7. $A B C D$ is a parallelogram, Q a point inside it. Prove that the sum of the areas of $A Q B$ and $C Q D$ is half the area of $A B C D$.
[^0]
Senior Questions

1. Prove that the square of the nth triangle number is the sum of the first n cubes, i.e.

$$
\left(\sum_{k=1}^{n} k\right)^{2}=\sum_{k=1}^{n} k^{3}, \quad \text { for } n \geq 1
$$

2. Find the limit $\lim _{n \rightarrow \infty} \frac{1^{2}+2^{2}+3^{2}+\ldots+n^{2}}{n^{3}}$.
3. A hand of eight cards is dealt from a standard pack. How many hands contain exactly three cards of the same value and the remaining cards from the remaining suit?

[^0]: ${ }^{1}$ Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.

