MATHEMATICS ENRICHMENT CLUB. ${ }^{1}$ Problem Sheet 5, June 4, 2013

1. Express the number $0.504504504 \ldots$ as a fraction in lowest terms.
2. Yvonne and Znonimir play a game. They have a pile of 500 counters and each is a allowed to remove $1,2,4,8, \ldots$ counters from the pile, taking turns in so doing. The last person to take a counter loses. Assuming that both play using the best possible strategy at each go, who wins?
3. The last digit of 1997^{1997} is
(a) 1
(b) 3
(c) 5
(d) 7
(e) 9 .
4. How many planes of symmetry has a rectangular box of dimensions $2 \times 2 \times 3$?
5. (a) Paul measured all 6 edges of a tetrahedron $A B C D$ and found them to be $1,3,4,5,6,8$ cm . Can this be correct?
(b) Paul then measured the edges to be $2,3,4,5,6,8$. If $A B=2$ what is the length of $C D$?
6. (a) Prove that the angle in a semicircle is right-angle.
(b) Show that if two chords of a circle mutually bisect each other, then they are both diameters.
(c) Complete the following statement: If a parallelogram is inscribed in a circle then

Senior Questions

1. Put $x=z-\frac{1}{z}$ and hence solve, in surd form, the cubic $x^{3}+3 x=1$.
2. Let $A B C$ be a triangle with three medians intersecting at S. Let L, M be the midpoints of $A C, A B$ respectively.
(a) Prove that the triangles $L S C$ and $M S B$ have equal areas.
(b) Given that $L S C$ has area $100 \mathrm{~cm}^{2}$, find the area of $A B C$.
[^0]
[^0]: ${ }^{1}$ Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.

