MATHEMATICS ENRICHMENT CLUB. ${ }^{1}$ Problem Sheet 6, June 11, 2013

1. The product of the ages in years of two adults is 770 . What is the sum of their ages?
2. An automatic card shuffler always re-arranges the cards in the same way. The cards begin in the order A, $2,3,4,5,6,7,8,9,10, \mathrm{~J}, \mathrm{Q}, \mathrm{K}$ and after 2 shuffles the order is $6,5, \mathrm{~K}, 10, \mathrm{Q}, 8,2,3,7, \mathrm{~J}, 9, \mathrm{~A}, 4$. What order do we get if we shuffle them three times?
3. (a) Show that the median to the hypotenuse of a right-angled triangle has length exactly half the length of the hypotenuse.
(b) Let A, B, C be a triangle with A_{1}, B_{1}, C_{1} the midpoints of the sides $B C, C A, A B$ respectively. Let D be the foot of the perpendicular from A to $B C$. Show that $B_{1} C_{1} D$ is congruent to $B_{1} C_{1} A_{1}$.
4. Find all positive integers m and n such that $3 m-1$ is a multiple of n and $3 n-1$ is a multiple of m.
(Hint: Suppose $m \leq n$, then n divides $3 m-1<3 m \leq 3 n$.)
5. We write $\phi(n)$ to be the number of positive integers less or equal to n and relatively prime to n (i.e. the number of numbers which have no common factor with n except 1.)
(a) Find $\phi(12), \phi(30)$.
(b) Suppose p is prime, find $\phi(p), \phi\left(p^{2}\right), \phi\left(p^{3}\right)$.
(c) If p and q are two different primes, find $\phi(p q)$ (in factored form).
6. Suppose S is the intersection of the three medians in triangle $A B C$. A straight line is drawn through S parallel to $B C$ meeting $A C$ at T. What is the ratio of the area of $A S T$ to the area of $A B C$?

Senior Questions

1. Suppose that n is an odd integer greater than 3. Find the number of positive and negative (real) roots of $2 x^{n}-n x^{2}+1=0$.

[^0]2. Let $f(x)=\left(1+\frac{1}{x}\right)^{x}$.
(a) Prove that $\frac{f^{\prime}(x)}{f(x)}=\log \left(1+\frac{1}{x}\right)-\frac{1}{1+x}$.
(b) By considering the area under the curve $y=\frac{1}{t}$ for t from 1 to $1+\frac{1}{x}$, show that $\log \left(1+\frac{1}{x}\right)>\frac{1}{1+x}$ and deduce that $f(x)$ is increasing.

[^0]: ${ }^{1}$ Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.

