

Never Stand Still

Faculty of Science

School of Mathematics and Statistics

MATHEMATICS ENRICHMENT CLUB.¹ Problem Sheet 9, July 23, 2013

- 1. The sequence a_1, a_2, a_3, \ldots is arithmetic. If $a_1 = 10$ and $a_{a_2} = 100$ what is a_{a_3} ?
- 2. We play a game in which we try to get from one number to another. Each move we can replace the natural number n with ab if a + b = n and a and b are both natural numbers. Can we get to 2001 from 22 in any number of moves?
- 3. How many digits does the number 125^{100} have?
- 4. Commander Keen is standing at the top left corner of an $n \times n$ grid, but wants to get to the bottom right corner. He's only allowed to move to the right, or downwards.
 - (a) Draw all the possible paths from the top left to the bottom right if the grid is 2×2 .
 - (b) How many possible paths are there if the grid is 20×20 ?
 - (c) What about $n \times n$?
- 5. Each of the six vertices of a regular hexagon are connected to every other vertex using either a red or a blue line. Show that, however this is done, the resulting diagram will always contain either a red or a blue triangle. Show that this is not always the case if we use the vertices of a pentagon.
- 6. Consider the two sequences $x_0 = 1$, $x_1 = 1$, $x_{n+1} = x_n + 2x_{n-1}$ and $y_n = 8n + 1$. Prove that for n > 1 these two sequences never have a common term.

Senior Questions

1. Prove that

$$1 \times 3 \times 5 \times \dots \times (2n-1) = \frac{(2n)!}{2^n n!}$$

2. By considering $\cos(A+B) + \sin(A-B) = 0$ find the general solution (for θ) of $\cos n\theta + \sin m\theta = 0$.

¹Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.