MATHEMATICS ENRICHMENT CLUB. ${ }^{1}$ Solution Sheet 10, July 30, 2013

1.

$$
\begin{aligned}
\left(x^{-1}+y^{-1}\right)^{-1} & =\frac{1}{\frac{1}{x}+\frac{1}{y}} \\
& =\frac{1}{\frac{y+x}{x y}} \\
& =\frac{x y}{y+x} .
\end{aligned}
$$

2. For a number to be a cube it's prime factorisation must contain only cubes. The prime factorisation of $60=2^{2} \times 3 \times 5$ so $n=2 \times 3^{2} \times 5^{2}=450$.
3. Using long division we can see that 12950264876 is divisible by 3 but that $4650088292=$ $\frac{12950264876}{3}$ is not. Thus the prime factorisation of 12950264876 contains a 3 which is not squared, so cannot be a square.
4. There is a multiplier α such that the angles of our triangle are $2 \alpha, 3 \alpha$ and 4α. Using the angle sum $2 \alpha+3 \alpha+4 \alpha=180 \Longrightarrow \alpha=20$. So the angles are 40,60 and 80 .
5. Let the median from C to $A B$ meet $A B$ at D. Since $D C$ has length $\frac{1}{2} A B$, both triangles $A D C$ and $B D C$ are isoceles with $A D=D C$ and $D C=D B$. So $\angle D C A=\angle D A C=\alpha$, $\angle D C B=\angle D B C=\beta$ and $\angle D A C+\angle D B C+\angle A C B=\alpha+\beta+(\alpha+\beta)=180 \quad \Longrightarrow$ $\alpha+\beta=90$. Since $\angle A C B=\alpha+\beta=90$.
6. (a) Recall that $\operatorname{gcd}(a+m b, b)=\operatorname{gcd}(a, b)$. So if we have $\operatorname{gcd}(m, n)$ with $m>n$ and we divide m by n to get a remainder r, then $\operatorname{gcd}(m, n)=\operatorname{gcd}(n, r)$. So divide $2^{50}+1$ by $2^{20}+1$ and we get

$$
2^{50}+1=\left(2^{20}+1\right)\left(2^{30}-2^{10}\right)+2^{10}+1
$$

so

$$
\operatorname{gcd}\left(2^{50}+1,2^{20}+1\right)=\operatorname{gcd}\left(2^{20}+1,2^{10}+1\right)
$$

[^0]Now we divide $2^{20}+1$ by $2^{10}+1$, and continue dividing the larger by the smaller and replacing the larger with the remainder, so it goes

$$
\begin{aligned}
\operatorname{gcd}\left(2^{20}+1,2^{10}+1\right) & =\operatorname{gcd}\left(2^{10}+1,2\right) \\
& =\operatorname{gcd}(2,1) \\
& =\operatorname{gcd}(1,0) \\
& =1
\end{aligned}
$$

(b) Note that for odd powers n, the remainder when dividing 2^{n} by 3 is 2 , whereas for even powers n the remainder is 1 . The remainder when dividing 1 by 3 is 1 . Since the sum of the remainders of $2^{n} / 3$ for odd n, and $1 / 3$ is 3 , then 3 divides $2^{n}+1$ for odd n. So the greatest common divisor of $2^{n}+1$ and $2^{m}+1$ for odd n and m must be at least 3 .

Senior Questions

1. (a) The surface area of a surface of revolution constructed by rotating the graph $y=f(x)$ about the x-axis for $a \leq x \leq b$ is given by

$$
A=2 \pi \int_{a}^{b} f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x .
$$

Since Gabriel's horn is infinitely long we actually mean

$$
A=\lim _{n \rightarrow \infty} 2 \pi \int_{1}^{n} \frac{1}{x} \sqrt{1+\left(-\frac{1}{x}\right)^{2}} d x
$$

Note that $\frac{1}{x} \sqrt{1+\frac{1}{x^{4}}} \geq \frac{1}{x}>0$ for $x \geq 1$ so

$$
\int_{1}^{n} \frac{1}{x} \sqrt{1+\frac{1}{x^{4}}} d x>\int_{1}^{n} \frac{1}{x} d x=\ln n .
$$

Since $\ln n \rightarrow \infty$ as $n \rightarrow \infty$ so does $\int_{1}^{n} \frac{1}{x} \sqrt{1+\frac{1}{x^{4}}} d x$ and A is infinitely large.
(b) The volume of a solid of revolution constructed by rotating $y=f(x), a \leq x \leq b$ about the x-axis is given by

$$
V=\pi \int_{a}^{b} f(x)^{2} d x
$$

For Gabriel's horn then

$$
\begin{aligned}
V & =\pi \lim _{n \rightarrow \infty} \int_{1}^{n} \frac{1}{x^{2}} d x \\
& =\pi \lim _{n \rightarrow \infty}\left[-\frac{1}{x}\right]_{1}^{n} \\
& =\pi \lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right) \\
& =\pi .
\end{aligned}
$$

So if Gabriel wanted to paint the infinite surface area of the inside of his infinitely long horn he'd need at most π units of paint. Wait, what?
2. Using various angle expansions obtain

$$
\begin{aligned}
\cos ((n+2) \theta) & =\cos ((n+1) \theta) \cos \theta-\sin ((n+1) \theta) \sin \theta \\
& =\cos ((n+1) \theta) \cos \theta-\sin \theta(\sin (n \theta) \cos \theta+\cos (n \theta) \sin \theta) \\
& =\cos ((n+1) \theta) \cos \theta-\sin (n \theta) \sin \theta \cos \theta-\cos (n \theta) \sin ^{2}(\theta) \\
& =\cos ((n+1) \theta) \cos \theta-\frac{1}{2} \sin (n \theta) \sin (2 \theta)-\cos (n \theta) \sin ^{2} \theta
\end{aligned}
$$

Now note

$$
\begin{aligned}
\sin (n \theta) \sin (2 \theta) & =\cos (n \theta) \cos (2 \theta)-\cos (n \theta+2 \theta) \\
& =\cos (n \theta)\left(2 \cos ^{2} \theta-1\right)-\cos ((n+2) \theta)
\end{aligned}
$$

So

$$
\begin{aligned}
\cos ((n+2) \theta) & =\cos ((n+1) \theta) \cos \theta-\frac{1}{2}\left(\cos (n \theta)\left(2 \cos ^{2} \theta-1\right)-\cos ((n+2) \theta)\right)-\cos (n \theta) \sin ^{2} \theta \\
& =\cos ((n+1) \theta) \cos \theta-\cos (n \theta) \cos ^{2} \theta+\frac{1}{2} \cos (n \theta)+\frac{1}{2} \cos ((n+2) \theta)-\cos (n \theta) \sin ^{2} \theta \\
\frac{1}{2} \cos ((n+2) \theta) & =\cos ((n+1) \theta) \cos \theta+\frac{1}{2} \cos (n \theta)-\cos (n \theta)\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
& =\cos ((n+1) \theta) \cos \theta-\frac{1}{2} \cos (n \theta) \\
\cos ((n+2) \theta) & =2 \cos ((n+1) \theta) \cos \theta-\cos (n \theta)
\end{aligned}
$$

Iteratively expanding $\cos 5 \theta$ we obtain

$$
\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta
$$

[^0]: ${ }^{1}$ Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.

