MATHEMATICS ENRICHMENT CLUB. ${ }^{1}$

Solution Sheet 11, August 6, 2013

1. (a)

$$
\begin{aligned}
0 & \leq(a-b)^{2} \quad \text { with equality only if } a=b \\
0 & \leq a^{2}+b^{2}-2 a b \\
a b & \leq \frac{a^{2}+b^{2}}{2}
\end{aligned}
$$

so $a b$ is largest when $a=b$, and since $a+b=k$ then at $a=b=\frac{k}{2}$.
(b) From above, first note that $x y \leq \frac{c^{2}}{2}$, then

$$
\begin{aligned}
c^{4} & =\left(x^{2}+y^{2}\right)^{2} \\
c^{4} & =x^{4}+y^{4}+2 x^{2} y^{2} \\
x^{4}+y^{4} & =c^{4}-2 x^{2} y^{2},
\end{aligned}
$$

which is minimum when $x^{2} y^{2}$ is maximum, which from above is when $x=y$ and has a value of $\left(\frac{c^{2}}{2}\right)^{2}$. So the minimum value of $x^{4}+y^{4}=c^{4}-\frac{c^{4}}{2}=\frac{c^{4}}{2}$.
2. Construct the triangles $A P B$ and $A Q B$. Let P^{\prime} be at the intersection of the circle and the line $A P$, now since $A B$ is a diameter and P^{\prime} on the circle, triangle $A P^{\prime} B$ is right at P^{\prime}, which also means triangle $P P^{\prime} B$ is right at P^{\prime}, and so $\angle A P B=\angle P^{\prime} P B<90^{\circ}$.
Similarly extend $A Q$ to the circle and call the intersection Q^{\prime}, then $\angle A Q^{\prime} B$ is right, which implies $\angle Q^{\prime} Q B<90^{\circ}$. Since $\angle Q^{\prime} Q B$ is an external angle of triangle $A Q B$ we have $\angle Q^{\prime} Q B=\angle Q A B+\angle Q B A$, and so $\angle Q A B+\angle Q B A<90^{\circ}$ and so $\angle A Q B>90^{\circ}$.
3. (a) Suppose a quadratic is factorised with roots α and β, then it is

$$
(x-\alpha)(x-\beta)=x^{2}-(\alpha+\beta) x+\alpha \beta
$$

Since 2343643 is odd, one of α or β must be odd and the other even, but the product of an odd and even number is even, and so cannot be 2382987 . Hence there are no integer solutions.

[^0](b) By similar logic, both α and β must be even (to have even sum and even product). If they are both even, then the product $\alpha \beta$ must be divisible by 4 (write $\alpha=2 m$ $\beta=2 n$ then $\alpha \beta=4 n m$), but 2382982 is not, and hence there are no integer solutions.
4. To make $\$ 10$ out of $n 50$ c coins and $m 20$ c coins we must satisfy
$$
5 n+2 m=100, \quad n, m \in \mathbb{Z}, n, m>0
$$
or
$$
m=100-5 \frac{n}{2}, \quad m, n \in \mathbb{Z}, n, m>0
$$

So we merely count the number of n which are divisible by 2 and satisfy the above, of which there are 9 .
5. (a) In general, if we prime factorise $x=p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{k}^{m_{k}}$ then every factor can be written as $p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$ where each $a_{=} 0,1, \ldots, m_{i}$. So there are $m_{1}+1$ choices for $a_{1}, m_{2}+1$ choices for a_{2} and so on, and hence the number of factors is $\left(m_{1}+1\right)\left(m_{2}+2\right) \cdots\left(m_{k}+1\right)$. Then $20=2^{2} \times 5$ and so has $3 \times 2=6$ factors, so $\tau(20)=6$.
If $n=p_{1}^{m_{1}} \cdots p_{k}^{m_{k}}$, then $n^{2}=p_{1}^{2 m_{1}} \cdots p_{k}^{2 m_{k}}$ and so $\tau\left(n^{2}\right)=\left(2 m_{1}+1\right)\left(2 m_{2}+\right.$ 1) $\cdots\left(2 m_{k}+1\right)$ which is a product of odd numbers and hence odd and so cannot be equal to the even number $2 \tau(n)$.
(b) The number $144^{2}=\left(3 \times 2^{2}\right)^{4}=3^{4} \times 2^{8}$ so $\tau\left(144^{2}\right)=5 \times 9=45$ and $\tau(144)=$ $\tau\left(\left(3 \times 2^{2}\right)^{2}\right)=\tau\left(3^{2} \times 2^{4}\right)=3 \times 5=15$ and $3 \times 15=45$.
6. Let $\sqrt[3]{x+\sqrt{x^{2}+1}}+\sqrt[3]{x-\sqrt{x^{2}+1}}=a+b=y$, and recall

$$
y^{3}=(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b) .
$$

Now

$$
\begin{aligned}
a^{3}+b^{3} & =2 x \\
a b & =\sqrt[3]{x^{2}-\left(x^{2}+1\right)} \\
& =\sqrt[3]{1}=1 .
\end{aligned}
$$

so

$$
\begin{aligned}
y^{3} & =2 x+3 \times 1 \times y \\
x & =\frac{3 y-y^{3}}{2}, \quad \text { where } y \in \mathbb{Z} .
\end{aligned}
$$

Senior Questions

1. Expand the right hand side:

$$
\begin{aligned}
\left(n^{2}-(3 n+1)\right)^{2}-25 n^{2} & =n^{4}-2 n^{2}(3 n+1)+(3 n+1)^{2}-25 n^{2} \\
& =n^{4}-6 n^{3}-2 n^{2}+9 n^{2}+6 n+1-25 n^{2} \\
& =n^{4}-6 n^{3}-18 n^{2}+6 n+1
\end{aligned}
$$

Now if $n^{4}-6 n^{3}-18 n^{2}+6 n+1$ is prime its only factors are itself and 1 . Since $n^{4}-6 n^{3}-18 n^{2}+6 n+1=\left(n^{2}-3 n-1-5 n\right)\left(n^{2}-3 n-1+5 n\right)=\left(n^{2}-8 n-1\right)\left(n^{2}+2 n-1\right)$
we must have one of the latter factors equal to 1 . So first consider

$$
n^{2}-8 n-2=0
$$

but $(-8)^{2}-4 \times 1 \times(-2)=72$ which is not a square, so this one has no integer solutions. Also

$$
n^{2}+2 n-2=0
$$

has no integer solutions. So there are no integer n for which $n^{4}-6 n^{3}-18 n^{2}+6 n+1$ is prime.
2. It doesn't matter which order the players win their games in, just the total number of games won or lost. If one player wins n games, the probability they won them all by luck alone is

$$
\binom{100}{n}\left(\frac{1}{2}\right)^{n}\left(\frac{1}{2}\right)^{100-n}=\frac{1}{2^{100}}\binom{100}{n}
$$

So we must find N such that $\sum_{n=1}^{N} \frac{1}{2^{100}}\binom{100}{n}=0.05$. This is prohibitively hard, but we can approximate the binomial distribution with a normal distribution with mean 50 and variance 25 (or standard deviation of 5). In a normal distribution 95% of values lie within 2 standard deviations of the mean, which means our players must win more than 60 of the 100 games to demonstrate that it is unlikely they won by luck alone.

[^0]: ${ }^{1}$ Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.

