MATHEMATICS ENRICHMENT CLUB. ${ }^{1}$

Solution Sheet 12, August 13, 2013

1. Start with

$$
\begin{aligned}
\frac{x+3 y}{2 x+5 y} & =\frac{4}{7} \\
7(x+3 y) & =4(2 x+5 y) \\
y & =x
\end{aligned}
$$

but we mustn't have $2 x+5 y=0$, which means $x \neq-\frac{5}{2} y$. The final solution then is $x=y \neq 0$.
2. Solving simultaneously we get $a=0, b=6, c=7, d=3$ and $e=-1$, so c is the largest. Can you do this without solving simultaneously?

Figure 1: Solution for Question 3

[^0]4. Begin by constructing the equilateral triangle $A D B$. Draw the line $C D$ to intersect $A B$ at E. Draw $E G$ parallel to $D B$ and $E F$ parallel to $D A$. Connect F and G then triangle $E F G$ is equilateral. To prove this is true, construct $B^{\prime} A^{\prime}$ parallel to $B A$ and passing through D, and show that $B B^{\prime} D$ and $A A^{\prime} D$ are similar to $G B E$ and $F A E$ respectively.

Figure 2: Solution for Question 4
5. Suppose otherwise, i.e., there is a 50×50 corner with no queens on it. Let's suppose the empty corner is the bottom-left (the argument will hold if any corner is chosen). To fit 100 queens on the chess board, all not attacking each other, we must at least have 1 queen per row, and 1 queen per column. Since the bottom-left corner is empty, the 50 top rows must have a queen each, and the 50 left columns must also have a queen each. Since none are attacking each other, there can be no queens in the top-right (otherwise not all rows/columns would have exactly one queen). Now we count the number of diagonals that stretch from the top-left 50×50 corner to the bottom-right 50×50 corner; there are 99 , and hence not enough diagonals for one per queen, and so two queens must share a diagonal. This is a contradiction, so we cannot have an empty corner.
6. (a) Just expand the two right-hand sides:

$$
\begin{aligned}
\left(x^{3}-1\right)\left(x^{12}+x^{9}+x^{6}+x^{3}+1\right) & =x^{15}-x^{12}+x^{12}-x^{9}+x^{9}-x^{6}+x^{6}-x^{3}+x^{3}-1 \\
& =x^{15}-1 \\
\left(x^{5}-1\right)\left(x^{10}+x^{5}+1\right) & =x^{15}-x^{10}+x^{10}-x^{5}+x^{5}-1 \\
& =x^{15}-1 .
\end{aligned}
$$

(b) From part (a) $2^{15}-1$ has factors $2^{5}-1=31$ and $2^{3}-1=7$, both of which are prime. We can use long division to divide $2^{10}+x^{5}+1$ by $2^{3}-1$, which gives
us the remainder of dividing $2^{15}-1$ by both $2^{5}-1$ and $2^{3}-1$. So the prime factorisation is $2^{15}-1=31 \times 7 \times 151$.
(c) We can use

$$
\begin{aligned}
x^{15}+1 & =\left(x^{3}+1\right)\left(x^{12}-x^{9}+x^{6}-x^{3}+1\right) \\
& =\left(x^{5}+1\right)\left(x^{10}-x^{5}+1\right) .
\end{aligned}
$$

So we can write

$$
\begin{aligned}
2^{15}+1 & =\left(2^{5}+1\right)\left(2^{3}+1\right) R \\
& =33 \times 9 \times R .
\end{aligned}
$$

Using long division we get $R=138+\frac{1}{3}$ so

$$
\begin{aligned}
2^{15}+1 & =3^{3} \times 11 \times\left(\frac{3 \times 138+1}{3}\right) \\
& =3^{2} \times 11 \times(3 \times 110+1) \\
& =3^{2} \times 11 \times 331
\end{aligned}
$$

[^0]: ${ }^{1}$ Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni. Solution to question 4 provided by G. Liang

