MATHEMATICS ENRICHMENT CLUB. ${ }^{1}$

Solution Sheet 2, May 14, 2013

1. $\operatorname{LCM}(10,12)=2^{2} \times 3 \times 5=60$ minutes.
2. $6528(10 a+3)=8256(30+a)$ implies $a=4$
3. 3 play only the piano.
4. Let $p(x)=\left(3+2 x+x^{2}\right)^{1998}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$.
(a) $a_{0}=p(0)=3^{1998}, a_{1}=p^{\prime}(0)=1998\left(3+2 \times 0+0^{2}\right)^{1997} \times(2+2 \times 0)=1998 \times 3^{1997} \times 2$
(b) $a_{0}+a_{1}+a_{2}+\cdots=p(1)=(3+2+1)^{1998}=6^{1998}$
(c) $a_{0}-a_{1}+a_{2}-\cdots=p(-1)=(3-2+1)^{1998}=2^{1998}$.
5. (a) Since $a+b+c=2$ and $a+b>c, a+c>b$ and $b+c>a$ each $a, b, c<1$.
(b)

$$
\begin{aligned}
(1-a)(1-b)(1-c) & >0 \\
1-(a+b+c)+a b+b c+c a-a b c & >0 \\
-1+a b+b c+c a-a b c & >0
\end{aligned}
$$

and

$$
\begin{aligned}
(a+b+c)^{2} & =4 \\
a^{2}+b^{2}+c^{2}+2(a b+b c+c a) & =4 \\
a b+b c+c a & =2-\frac{1}{2}\left(a^{2}+b^{2}+c^{2}\right) .
\end{aligned}
$$

Combining the two yields the answer.
6. (a) Using the triangle inequality gives $A C<A B+B C, A C<A D+D C, B D<$ $A D+A B$ and $B D<B C+C D$, summing all of these together gives

$$
\begin{aligned}
& 2(A C+B D)<2(A B+B C+C D+A D) \\
& A C+B D<p
\end{aligned}
$$

[^0]Mark as E the intersection of $A C$ and $B D$, then again using the triangle inequality we have $A B<A E+E B, B C<E B+E C, C D<C E+E D$ and $A D<E D+A E$. Again summing all of these together gives

$$
\begin{gathered}
A B+B C+C D+A D<A E+E C+B E+E D+B E+E D+C E+E A \\
p<A C+B D+B E+C A \\
p<2(A C+B D) \\
\frac{1}{2} p<A C+B D .
\end{gathered}
$$

(b) The lines $A E, B E, C E$ and $D E$ divide the quadrilateral into 4 pieces. Say $\angle A E B=\theta$, and $\angle B E C=\phi$, then by opposite angles $\angle C E D=\theta$ and $\angle A E D=$ ϕ. The 4 angles must sum to 2π so $2 \theta+2 \phi=2 \pi \Longrightarrow \phi=\pi-\theta$. Note also that $\sin \theta=\sin (\pi-\theta)$. Now we may sum the area of the 4 triangles to determine the area of the quadrilateral:

$$
\begin{aligned}
a & =\frac{1}{2} A E \cdot B E \sin \theta+\frac{1}{2} B E \cdot C E \sin \phi+\frac{1}{2} C E \cdot D E \sin \theta+\frac{1}{2} D E \cdot A E \sin \phi \\
& =\frac{1}{2} \sin \theta(A E \cdot B E+B E \cdot C E+C E \cdot D E+D E \cdot A E) \\
& =\frac{1}{2} \sin \theta(A E+E C)(B E+E D) \\
& =\frac{1}{2} \sin \theta A C \cdot B D \leq \frac{1}{2} A C \cdot B D .
\end{aligned}
$$

(c) We can see from the above that equality of the last expression holds if $\sin \theta=$ $1 \Longrightarrow \theta=\frac{\pi}{2}$, thus if $A C \cdot B D=2 a$ then the diagonals are perpendicular.

Figure 1: Diagram for question 7
7. From the diagram we can see three sets of rhombi, each with side length r, the radius of the three circles, which are $O_{2} B_{3} P, O_{3} C O_{1} P$ and $O_{1} A O_{2} P$ (drawn in black). Each is a rhombus because all 4 sides are equal. Thus $O_{2} B\left\|O_{3} P\right\| O_{1} C$ and so $O_{1} O_{2} B C$ is a parallelogram (a pair of equal length, parallel sides) and hence $O_{1} O_{2}$ is equal in length to $C B$. Similarly $O_{1} O_{3} B A$ and $O_{2} O_{3} C A$ are parallelograms so $O_{1} O_{2}$ and $B A$ are equal in length and $O_{2} O_{3}$ and $C A$ are equal in length. Thus $O_{1} O_{2} O_{3}$ is congruent to $A B C$ since three sides are equal.

[^0]: ${ }^{1}$ Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.

