MATHEMATICS ENRICHMENT CLUB. ${ }^{1}$

Solution Sheet 3, May 21, 2013

1. The dimensions of the brick are integers L, W, H with $L+W=9 \mathrm{~cm}$ and $L W H=$ $42 \mathrm{~cm}^{3} \Longrightarrow H=42 /(L+W) \mathrm{cm}$. Only $L=2, W=7$ has $L W$ divide 42 , and so $H=3 \mathrm{~cm}$.
2.

$$
\begin{aligned}
\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right) \cdots\left(1-\frac{1}{2008}\right) & =\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)\left(\frac{3}{4}\right) \cdots\left(\frac{2007}{2008}\right) \\
& =\frac{1}{2008}
\end{aligned}
$$

3. (a) Let $n=b_{l} 10^{l}+b_{l-1} 10^{l-1}+\cdots b_{1} 10+b_{0}$ and $n^{2}=a_{k} 10^{k}+\cdots a_{1} 10+a_{0}$, with $a_{0}=9, a_{1}=0$. By squaring n we see that $a_{0}=b_{0}^{2} \bmod 10$ and $a_{1}=\left\lfloor\frac{b_{0}^{2}}{10}\right\rfloor+2 b_{1} b_{0}$ $\bmod 10$. Thus $b_{0}=3$ and $0=6 b_{1} \bmod 10$. The smallest $b_{1}>0$ which satisfies this is $b_{1}=5$ so $n=53$.
(b) This time $a_{0}=a_{3}=9, a_{1}=a_{2}=0$. If we write $p(x)=b_{l} x^{l}+\cdots b_{1} x+b_{0}$, then let $p(x)^{2}=c_{j} x^{j}+\cdots+c_{1} x+c_{0}$ then

$$
\begin{aligned}
& c_{0}=b_{0}^{2} \\
& c_{1}=2 b_{0} b_{1} \\
& c_{2}=2 b_{0} b_{2}+b_{1}^{2} \\
& c_{3}=2 b_{0} b_{3}+2 b_{1} b_{2}
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
& a_{0}=c_{0} \bmod 10 \\
& a_{1}=\left(\left\lfloor\frac{c_{0}}{10}\right\rfloor+c_{1}\right) \bmod 10 \\
& a_{2}=\left(\left\lfloor\frac{c_{1}+\left\lfloor\frac{c_{0}}{10}\right\rfloor}{10}\right\rfloor+c_{2}\right) \quad \bmod 10 \\
& a_{3}=\left(\left\lfloor\frac{c_{2}+\left\lfloor\frac{c_{1}+\left\lfloor\frac{c_{0}}{10}\right\rfloor}{10}\right\rfloor}{10}\right\rfloor+c_{3}\right) \bmod 10
\end{aligned}
$$
\]

Solving in order from b_{0} to b_{3} one finds $b_{0}=3, b_{1}=5$ or 0 . Then if $b_{1}=5$ we find no solution for b_{3}, so $b_{1}=0$. Then $b_{2}=0$ or 5 , but this time if $b_{2}=0$ we find no solution for b_{3}, thus $b_{2}=5$ and we find $b_{3}=1$. That is, $n=1503$.
4.

$$
\frac{a}{b+1}+\frac{b}{a+1}+(1-a)(1-b)=\frac{1+a+b+a^{2} b^{2}}{1+a+b+a b}
$$

Since $a b<1, a^{2} b^{2}<a b$, and the result follows.
5. (a)

$$
\begin{aligned}
& x_{2}=1 \\
& x_{3}=3 \\
& x_{4}=5 \\
& x_{5}=11 \\
& x_{6}=21 .
\end{aligned}
$$

(b) Note that 1999 in base 8 is 3717 . Note also that in base $8 x_{3}, x_{4}, x_{5}$ and x_{6} end in either 3 or 5 . By writing $x_{n}=a_{k} 8^{k}+a_{k-1} 8^{k-1}+\cdots+3$ and $x_{n-1}=$ $b_{l} 8^{l}+b_{l-1} 8^{l-1}+\cdots+5$ deduce that x_{n+1}, in base 8 , ends with a 3 . Generalise to deduce that all $x_{n}, n \geq 3$ end in either 5 or 3 and hence can never equal 3717 .
(c) Validate by substituting into the recursive rule $x_{n+1}=x_{n}+2 x_{n-1}$.
6. (a) Let O be the centre of the escribed circle, P, Q and R the points at which it touches $A B, A C$ and $B C$ respectively. Using properties of isoceles triangles deduce that $|A P|=|A Q|=s$, then divide the quadrilateral $A P O Q$ into the triangles $A B C$, $B P R, C Q R$ and the quadrilateral $P R Q O$ and compare areas.
(b) Note that $\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}=\frac{s}{A}$. By dividing the triangle $A B C$ up into 3 pairs of congruent, right triangles using the radii of the incircle we can deduce that $A=r s$ where r is the radius of the incircle. The result then follows.
7. Since $A B C D$ is a parallelogram, there's a line through Q perpendicular to both $A B$ and $C D$. Let P and R be the points this line connects to $A B$ and $C D$ respectively, then let $|P Q|=h_{1},|Q R|=h_{2}$, and $|A B|=|C D|=b$. Then the sum of the areas of $A B Q$ and $C D Q$ is $\frac{1}{2} h_{1} b+\frac{1}{2} h_{2} b=\frac{1}{2} b\left(h_{1}+h_{2}\right)$ which is half of the area of a parallelogram with base b and perpendicular height $h_{1}+h_{2}$, which is what $A B C D$ is.

Senior Questions

1. Solve using induction, or visit http://en.wikipedia.org/wiki/Squared_triangular_ number\#Proofs for a cute geometrical representation.
2. $1^{2}+2^{2}+\cdots+n^{2}=\frac{1}{6}\left(2 n^{3}+3 n^{2}+n\right)$, so $\lim _{n \rightarrow \infty} \frac{1^{2}+2^{2}+\cdots+n^{2}}{n^{3}}=\frac{1}{3}$.
3. (I could be wrong) Choose one of 13 values for the triplet and one of 4 suits to exclude and there are 13×4 possible triplets, then $\binom{12}{5}$ combinations of the remaining suit are left. So there are $13 \times 4 \times\binom{ 12}{5}$ possible hands.

[^0]: ${ }^{1}$ Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.

