MATHEMATICS ENRICHMENT CLUB. ${ }^{1}$ Solution Sheet 5, June 4, 2013

1. $\frac{504}{999}$
2. Let's call a "game state" the number of counters left at the start of a turn. A "winning game state" is one in which we can win from, and similarly a "losing game state" is one in which we can lose from. For example 1 is a losing game state (you must take the one counter, which is the last and hence lose), while 2 is a winning game state (you can just take one, leaving your opponent in a losing game state). Let's list the states, starting from 1 and working backwards.

Winning	Losing
2	1
3	4
5	7
6	10
8	13
9	\vdots
11	
12	

Working backwards from 1 we ask "can we remove $1,2,4,8, \ldots$ so that the remaining number of counters is listed in the Losing column?" We can see that the losing states follow the pattern $1+3 k$ where $k \in \mathbb{N}$. Since $499=1+3 \times 166$ it is a Losing state, and 500 is a Winning state. So whoever goes first will win.
3. The last digit of 1997^{1997} will be a power of 7 modulo 10 . The powers of 7 modulo 10 are $7,9,3,1,7,9,3, \ldots$, so powers of the form $1+4 k, k \in \mathbb{N}$ end in a 7 . Now, $1997=1+4 \times 499$ so 1997^{1997} ends in a 7 .
4. 5
5. (a) It can't be correct because it violates the Triangle inequality.

[^0](b) If $A B=2$, we must have two triangles whose only common side as side length 2 , which are $2,3,4$ and $2,6,5$. These lengths must go along $B C, A C, A D$ and $B D$ so the remaining side $C D$ must be length 8 .
6. (a) Construct a semi-circle with diameter $A B$, centre O and point on the circumference C. Draw the radius $C O$. Triangles $A O C$ and $C O B$ are both isoceles (two sides are radii). The angle $\angle A C B=\angle A C O+\angle O C B=\angle O A C+\angle O B C=$ $\angle B A C+\angle A B C$ and $\angle A C B+\angle B A C+\angle A B C=180^{\circ}=2 \angle A C B$.
(b) Draw a circle and let $A C$ and $D B$ be the two mutually bisecting chords, meeting at O. Construct the cyclic quadrilateral $A B C D$, which is a parallelogram because its diagonals bisect each other. Since $A B \| C D$ we have the alternate angles $\angle A B D=$ $\angle B D C$. Also, since $\angle A B D$ and $\angle A C D$ are subtended from a common chord, they are equal. Thus $\angle B D C=\angle A B D$ and $\triangle O D C$ is isoceles which implies $D O=C O=A O$. Using the same argument as above, we find that $\angle C D A$ is 90° which means $A C$ is a diameter, and hence so is $D B$.
(c) If a parallelogram is inscribed in a circle then it's a rectangle.

Senior Questions

1.

$$
\begin{aligned}
\left(z-z^{-1}\right)^{3}+3\left(z-z^{-1}\right) & =1 \\
z^{3}-z^{-3}+3 z z^{-2}-3 z^{2} z^{-1}+3 z-3 z^{-1} & =1 \\
z^{3}-z^{-3} & =1 \\
z^{6}-z^{3}-1 & =0 \\
z^{3} & =\frac{1}{2} \pm \frac{\sqrt{5}}{2} \\
x & =\left(\frac{1}{2} \pm \frac{\sqrt{5}}{2}\right)^{\frac{1}{3}}-\frac{1}{\left(\frac{1}{2} \pm \frac{\sqrt{5}}{2}\right)^{\frac{1}{3}}} .
\end{aligned}
$$

2. (a) Label the areas $L S C$ and $M S B, x$ and y respectively. Since $S L$ is the median of $A S C$ the area $A S L$ is also x, similarly since $S M$ is the median of $A S B$ the area $A S M$ is also y. Finally, the median from S cuts $S B C$ into two equal area region also, call those areas z each. The median from A cuts the whole triangle into two equal regions so $2 y+z=2 x+z$, so $x=y$.
(b) Leaving x, y and z as above, the area of the whole triangle is $2 x+2 y+2 z$. Since $B L$ is a median $2 z+x=2 y+x$, so $2 z=2 y$ or $z=y$. Thus $x=y=z=100 \mathrm{~cm}^{2}$ so the area of $A B C=600 \mathrm{~cm}^{2}$.

[^0]: ${ }^{1}$ Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.

