Never Stand Still

MATHEMATICS ENRICHMENT CLUB. ${ }^{1}$ Solution Sheet 6, June 11, 2013

1. The prime factorisation of $770=2 \times 5 \times 7 \times 11$, so assuming by adults we mean over 18 year olds, our two people are 22 and 35 .
2. (Disclaimer: Introduction 'group theory' answer - this question can be answered more simply by deductive logic, or guess and check (maximum 13 guesses), but this question's close ties to group theory I think warrants a bit of abstract algebra. If you just want the answer, skip to the end ©)
Let's write the card shuffler as a function σ, where $\sigma(n)$ is the new position of the nth card after one shuffle. We'll also write iterated shuffles as σ^{m}, meaning m compositions of the shuffling function σ. As a final piece of notation, we'll introduce ' k-cycles', which are written as a collection of numbers in a pair of brackets and indicate that the σ value of each number is that to its immediate right (or the first position if at the end of the cycle), e.g. (123) means $1 \rightarrow 2,2 \rightarrow 3$ and $3 \rightarrow 1$.
The information given tells us

$$
\sigma^{2}=(11252791110413386) .
$$

We can multiply (compose) cycles together just by tracing from left (i.e. applying the cycles to each number left to right), for example

$$
(123)(214)=(1)\left(\begin{array}{ll}
2 & 3
\end{array}\right)=\left(\begin{array}{ll}
2 & 3
\end{array}\right)
$$

since $1 \rightarrow 2 \rightarrow 1,2 \rightarrow 3,3 \rightarrow 1 \rightarrow 4$ and $4 \rightarrow 2 .^{2}$ In this manner we can repeatedly multiply σ^{2} and we find

$$
\sigma^{26}=(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13),
$$

i.e. shuffling 26 times puts the cards back in to the order they originally were. This means the 'order' of σ is ≤ 26, where the 'order' of a permutation is how many times

[^0]you multiply it by itself to get the identify function - one that leaves everything alone like the one above.

Since σ is, at most, a 13 -cycle its order is ≤ 13. So the order of σ could be $1,2,13$ or 26 in order to satisfy $\sigma^{26}=()$, but it can't be 26 , it's not 1 or 2 from the given information, so it must have order 13.

So now we work out σ^{12}, then we can determine σ so that $\sigma^{12} \sigma=()$. I worked out σ^{12} by first performing

$$
\sigma^{2} \sigma^{2}=\sigma^{2}=(15711436122910138)
$$

then

$$
\sigma^{8}=\sigma^{4} \sigma^{4}=(17462108511312913)
$$

and finally

$$
\sigma^{12}=\sigma^{8} \sigma^{4}=(11169873213541210) .
$$

To find σ I then wrote it as a 2 -cycle representation

$$
\sigma=(a 1)(b 2)(c 3)(d 4) \cdots(m 13)
$$

and work through, from left to right, making sure I put the numbers back where they started. For instance $\sigma^{12}(1)=11$, so set $a=11, \sigma^{12}(2)=13$, so $b=13, \sigma^{12}(3)=2$ so $c=13$ (I've already made $b=13$, and so far $2 \rightarrow 13$ so now I make $13 \rightarrow 3$ after, so that overall $2 \rightarrow 13$). Continuing, we find

$$
\begin{aligned}
\sigma & =(111)(132)(133)(124)(125)(96)(137)(138)(139)(1110)(1112)(1113) \\
& =(11012451323789611) .
\end{aligned}
$$

Finally, this means the cards originally ordered $A, 2,3,4,5,6,7,8,9,10, J, Q, K$ become, after one shuffle, $J, K, 2, Q, 4,9,3,7,8, A, 6,10,5$.
3. (a) Draw the right angled triangle $A B C$ with right angle at C. Let D be the midpoint of $A B$, and E a point on $A C$ such that $A C \perp D E$. Then $\triangle A D E$ is similar to $\triangle A B C$ (three angles equal). Since $A D=\frac{1}{2} A B$ then $A E=\frac{1}{2} A C$ or rather $A E=E C$. Now $\triangle A E D$ is congruent to $\triangle C E D$ (two sides equal, $A E=E C$, $D E$ common, and an included angle $\angle A E D=\angle D E C$). Thus $\frac{1}{2} A B=A D=D C$.
(b) From part i) we see $D B_{1}=B_{1} C$ and $D C_{1}=C_{1} B$. Note that $\Delta C B_{1} A_{1}$ is similar to $\triangle C A B$ (two sides in ratio and an included angle). The sides are in ratio $1: 2$ so $A_{1} B_{1}=\frac{1}{2} A B=C_{1} B$, and so $A_{1} B_{1}=D C_{1}$. Similarly $\Delta B C_{1} A_{1}$ is similar to $\triangle B A C$, so $C_{1} A_{1}=B_{1} C=B_{1} A_{1}$. Thus $\Delta B_{1} C_{1} D$ and $\Delta B_{1} C_{1} A_{1}$ are congruent because they have 3 equal sides.
4. Following the hint, we must have $3 m-1=n$ or $3 m-1=2 n$, since $3 m-1<3 n$. So

$$
\begin{aligned}
3(3 m-1)-1 & =k m, \quad k \in \mathbb{Z} \\
(9-k) m & =4 \\
m & =\frac{4}{9-k} \\
m & =4,2, \text { or } 1,
\end{aligned}
$$

or

$$
\begin{aligned}
3 \frac{3 m-1}{2}-1 & =k m \\
9 m-3-2 & =2 k m \\
m & =\frac{5}{9-2 k} \\
m & =5, \text { or } 1 .
\end{aligned}
$$

Thus the pairs are $(1,1),(1,2),(2,5),(4,11)$ and $(5,7)$.
5. (a) $\phi(12)=4, \phi(30)=8$
(b) We can think of $\phi(n)$ as being the number of numbers less than n which are not a multiple of a factor of n (except the factor 1). So if p is prime, its only factors are 1 and p, so every other number is not a multiple of a factor that isn't 1 , except p itself. Thus $\phi(p)=p-1$.
For p^{2}, the factors are $1, p$ and p^{2}, so the multiples of the factors that aren't 1 are $p, 2 p, 3 p, \ldots, p^{2}$, of which there are p. So $\phi\left(p^{2}\right)=p^{2}-p$.
For p^{3}, the factors are $1, p, p^{2}$ and p^{3}, so the multiples of the factors that aren't 1 are $p, 2 p, 3 p, \ldots, p^{2},(p+1) p, \ldots, 2 p^{2},(2 p+1) p, \ldots$, that is, the multiples of p^{2} are contained in the multiples of p, of which there are p^{2}. So $\phi\left(p^{3}\right)=p^{3}-p^{2}$.
(c) Using the same method as above, the factors of $p q$ are $1, p, q$ and $p q$, so the multiples of the factors that aren't 1 are $p, 2 p, 3 p, \ldots, q p(q$ of them) and $q, 2 q, 3 q, \ldots, p q$ (p of them), but we don't want to count $p q$ twice. So $\phi(p q)=p q-q-(p-1)$.
6. We use the fact that the medians divide $A B C$ into 2 equal area pieces, and that S is $\frac{2}{3}$ along the median from A (you can prove these by considering the areas of smaller triangles with the same heights).
Let the median from A meet $B C$ at P, since $S T$ is parallel to $B C$ triangles $A P C$ and $A S T$ are similar - 3 angles equal. Since $A S=\frac{2}{3} A P$ then the area of $A S T$ is $\frac{4}{9}$ the area of $A P C$ which is half the area of $A B C$ so the area of $A S T$ is $\frac{2}{9}$ the area of $A B C$.

Senior Questions

1. Let $f(x)=2 x^{n}-n x^{2}+1$, then $f^{\prime}(x)=2 n x\left(x^{n-2}-1\right)$. So f has stationary points at $x=0$ and $x=1$ (since $n>3$ and odd). Taking the second derivative $f^{\prime \prime}(x)=$ $2 n(n-1) x^{n-2}-2 n$, so $f^{\prime \prime}(0)=-2 n<0$ and $f^{\prime \prime}(1)=2 n(n-1)-2 n=2 n(n-2)>0$. So $x=0$ is a local max and $x=1$ is a local min.

Finally $f(0)=1>0$ and $f(1)=3-n<0$. Since these are the only stationary points, f is monotonic between/outside of them. Since $x=0$ is a local max, and positive there is one root for $x<0$, which is unique since f is monotonic decreasing for $x<0$. Since $f(0)>0>f(1)$ and f is monotonic between 0 and 1 there is exactly one root for $0<x<1$. Since $x=1$ is a local min, $f(1)<0$ and $f(x)$ is monotonic increasing for $x>1$ there is exactly one root for $x>1$. Thus, in total, there are 3 roots.
2. Take the \log of both sides and the differentiate both sides with respect to x.

$$
\begin{aligned}
\log f(x) & =x \log \left(1+\frac{1}{x}\right) \\
\frac{f^{\prime}(x)}{f(x)} & =\log \left(\left(1+\frac{1}{x}\right)-\frac{1}{x+1} .\right.
\end{aligned}
$$

3. Draw the graph of $y=\frac{1}{t}$ for t between 1 and $1+\frac{1}{x}$ and we see that the area under the curve is larger than the area of the rectangle with base $1+\frac{1}{x}-1$ and height $\frac{1}{1+\frac{1}{x}}$, so

$$
\int_{1}^{1+\frac{1}{x}} \frac{1}{t} d t=\log \left(1+\frac{1}{x}\right)>\frac{1}{x} \frac{x}{x+1}=\frac{1}{1+x}
$$

Thus $\frac{f^{\prime}(x)}{f(x)}>0$, and since $f(x)>0$ for all x so is $f^{\prime}(x)$.

[^0]: ${ }^{1}$ Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.
 ${ }^{2}$ An interesting result is that every permutation can be written as a product of 2 -cycles, e.g. (123)= (13)(32), and even though this 2-cycle representation is not unique, it is always made up of either an odd or even number of 2 -cycles.

