MATHEMATICS ENRICHMENT CLUB. ${ }^{1}$

 Solution Sheet 7, June 18, 2013

 Solution Sheet 7, June 18, 2013}

1. (a) Using the cosine rule on angle A we get the two equations

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

and

$$
h^{2}=b^{2}+\left(\frac{c}{2}\right)^{2}-2 b \frac{c}{2} \cos A
$$

By eliminating $\cos A$ we arrive at the desired result.
(b) The medians of the triangle will divide it into 3 smaller triangles whose sides are, for example, $\frac{2}{3} h, \frac{2}{3} k$ and a, with one median $\frac{1}{3} l$. So we can use the formula from part (a) to determine the length a. Repeat for b and c and knowing the lengths of the three sides is sufficient to construct the triangle.
2. Draw the triangles $A O_{1} P$ and $P O_{2} B$. Both of which are isoceles triangles as they have two sides which are radii. Also $\angle O_{1} P O_{2}=\pi$ since both circles have a common tangent at P. So $\angle O_{1} A P=\angle O_{1} P A=\angle O_{2} P B=\angle O_{2} B P$, using the properties of isoceles triangles and the vertically opposite angle. Now since they are both tangents at A and B, they make an angle of $\frac{\pi}{2}$ with the radii $O_{1} A$ and $O_{2} B$, meaning the angles between the tangents and $A B$ are equal and alternate, implying the two tangets are parallel.
3. Start by noting that if 100 divides n ! then 100 divides m ! for $m \geq n$, and so $n!+$ $(n+1)!+\cdots$ contributes nothing extra to the final two digits. So we want to find the smallest n so that 100 divides n ! then sum the final digits of $1!+2!+\cdots+n$!, which we can do by ignoring all other digits.
Now, $100=2^{2} 5^{2}$ in prime factorisation form, so the prime factorisation of $n!$ must have two 2 s and two 5 s. Let's start with 9 !:

$$
\begin{aligned}
9! & =1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \\
& =2 \times 3 \times 2^{2} \times 5 \times(2.3) \times 7 \times\left(2^{3}\right) \times\left(3^{2}\right) \\
& =2^{7} \times 3^{4} \times 5 \times 7
\end{aligned}
$$

[^0]Finding the next, 10!, we simply multiply by the prime factorisation of $10=2 \times 5$ so

$$
10!=2^{8} \times 3^{4} \times 5^{2} \times 7
$$

We can see that 10 is the smallest number n for which 100 divides n !. So let's add:

last two digits of $n!$	n
1	1
2	2
6	3
24	4
20	5
20	6
40	7
20	8
80	9

summing the left hand column gives 13 .
For 3 digits, we do the same thing, but find the smallest n such that 1000 divides n (which is 15).
4. Take the plane through A, B_{1} and D_{1} and shift it $\frac{1}{2}$ a side length along $A D$ (which also shifts it halfway along $A B$, or halfway up $D D_{1}$ and $B B_{1}$ or halfway along $D_{1} C_{1}$ or $\left.B_{1} C_{1}\right)$. Thus all those midpoints are coplanar. We can also see that each side length of the hexagon produced is $\sqrt{2}$ times the side length of the cube, and that each angle is equal (try rotating the cube about the line through $A C$).
5. Recall that the lengths of two tangents to an external point are equal. Using this we can write the perimeter of the quadrilateral as $2 s=2 w+2 x+2 y+2 z$ where w, x, y, z are the lengths of the tangents to the vertices of the quadrilateral. Also recall that a radius and tangent are perpendicular, so the quadrilateral is split into 4 pairs of congruent, right triangles, so the area is $A=2\left(\frac{1}{2} r w+\frac{1}{2} r x+\frac{1}{2} r y+\frac{1}{2} r z\right)=r s$.
6. Each number on a clock is $\frac{1}{12} 360^{\circ}=30^{\circ}$ apart, and each minute-notch is $\frac{1}{60} 360^{\circ}=6^{\circ}$ apart. But, since the hour hand also moves throughout the hour we must correct for that - the hour hand moves $\frac{1}{60} 30^{\circ}=\frac{1}{2}^{\circ}$ every minute. So the angle between the two hands is $5 \times 30^{\circ}-25 \times \frac{1}{2}^{\circ}=\frac{275^{\circ}}{2}=137.5^{\circ}$.

Senior Questions

1. Use the double angle formula for tan to find a double angle formula for cot, and use this to take the cot of both sides. Use the same formula to get an exact expression for $\cot \frac{\pi}{12}\left(\sqrt{3}=\cot \frac{\pi}{6}=\cot \left(2 \frac{\pi}{12}\right)\right)$.
2. Smallest is $\frac{20}{8}=\frac{5}{2}$ and largest is $\frac{40}{4}=10$.

[^0]: ${ }^{1}$ Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.

