MATHEMATICS ENRICHMENT CLUB. ${ }^{1}$

Solution Sheet 9, July 23, 2013

1. Since the sequence is arithmetic $a_{n}=a_{1}+(n-1) d$ where d is the common difference. With $a_{1}=10$ this means $a_{n}=10+(n-1) d$. Now using the data $a_{a_{2}}=100$ we get

$$
\begin{aligned}
100 & =10+\left(a_{2}-1\right) d \\
90 & =\left(a_{2}-1\right) d \\
90 & =(10+(2-1) d) d \\
0 & =d^{2}+10 d-90, \quad \text { so } \\
d & =\frac{-9 \pm \sqrt{81+4 \times 90}}{2} \\
d & =-15,6 \quad \text { and since } d>0, d=6 .
\end{aligned}
$$

Now we can compute $a_{a_{a_{3}}}$, so

$$
\begin{aligned}
a_{a_{a_{3}}} & =10+\left(a_{a_{3}}-1\right) d \\
& =10+\left(\left(10+\left(a_{3}-1\right) d\right)-1\right) d \\
& =10+((10+((10+(3-1) d)-1) d)-1) d \\
& =10+((10+((10+2 \times 6)-1) \times 6)-1) \times 6 \\
& =10+((10+(22-1) \times 6-1) \times 6 \\
& =10+(10+126-1) \times 6 \\
& =10+135 \times 6 \\
& =820 .
\end{aligned}
$$

2. Let's talk about two moves, one makes a number bigger, and one reduces the number by one. First, take the latter, every $n=(n-1)+1$ and $n-1=(n-1) \times 1$. To make a number bigger take instead $n=(n-2)+2$ so $2(n-2)=2 n-4$ which is larger than n for $n>4$. Using these two moves we can make the moves

$$
22 \rightarrow 40 \rightarrow 76 \rightarrow 148 \rightarrow 292 \rightarrow 580 \rightarrow 1156 \rightarrow 2308 \rightarrow 2307 \rightarrow 2306 \rightarrow \cdots \rightarrow 2001
$$

[^0]3. Note
\[

$$
\begin{aligned}
125^{100} & =5^{300} \\
& =\frac{10^{300}}{2^{300}} \\
& =\frac{10^{300}}{(1024)^{30}} \\
& =\frac{10^{300}}{\left(1.024 \times 10^{3}\right)^{30}} \\
& =\frac{10^{300}}{1.024^{30} \times 10^{90}} \\
& =\frac{10^{210}}{1.024^{30}} .
\end{aligned}
$$
\]

It now remains to see that $1.024^{30}<10$ and hence there are 210 digits. Can you show this using the binomial theorem?
4. (a) See figure 1

Figure 1: The possible paths on a 2×2 grid. .
(b) At each vertex ask how many paths are there from the top-left to the given vertex. In fact, it is the sum of the number of paths from the top-left to the vertex immediately to the left of the given vertex and the number of paths from the topleft to the vertex immediately above the given vertex. This means the number of paths from the top-left to each vertex follows a Pascal's Triangle pattern. So there are $\binom{40}{20}$ paths.
(c) This generalises easily to $\binom{2 n}{n}$.
5. Let's label the vertices of our hexagon 1 through to 6 . Then we can refer to edges as $(x y)$ where x and y are a vertex. Now since we can just re-label the hexagon however we want, let's just consider vertex 1 . There are 5 edges coming off vertex 1 , and since we only have 2 colours, 3 of these edges are the same colour, let's say red. And again, since we can re-label the hexagon however we want, let's suppose these edges are (12),(13) and (14). Suppose we don't have any red triangles, so (23) must be blue to prevent $\Delta 123$ from being red, also (34) must be blue to prevent $\Delta 134$ from being

Figure 2: Pascals triangle emerging
all red and (24) must be blue to prevent $\Delta 124$ from being all red. But now (23), (34) and (24) are all blue, so $\Delta 234$ is blue.
Seeing as it doesn't matter how you label the hexagon, this always happens.
6. Look at the sequences in base- $8, x_{n}$ always ends in either 3 or 5 , while y_{n} always ends in 1 . Hence they can never be the same.

[^0]: ${ }^{1}$ Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.

