## MATHEMATICS ENRICHMENT CLUB. Problem Sheet 13, August 19, 2014

1. Let $N=1^{9} \times 2^{8} \times 3^{7} \times 4^{6} \times 5^{5} \times 6^{4} \times 7^{3} \times 8^{2} \times 9^{1}$. How many perfect squares divide $N$ ?
2. Let $-10 \leq a, b, c \leq 10$. How many triplets, $(a, b, c)$, satisfy

$$
\frac{\frac{a}{b}}{c}=\frac{a}{\frac{b}{c}} .
$$

3. Find the sum of all primes $p$ such that $5^{p}+4 p^{4}$ is a perfect square.
4. Show that $(1+\sqrt{5})^{n}+(1-\sqrt{5})^{n}$ is an even integer for all positive integers $n$.


Figure 1: Figure for question 5
5. In the figure, $A B C$ is a circle of radius $R$ with 3 tear-drop shapes inside. Each of the $\operatorname{arcs} A C^{\prime} A^{\prime}, B A^{\prime} B^{\prime}$ and $C B^{\prime} C^{\prime}$ are of circles of the same radius, $r$. Find the ratio of $R$ to $r$ and the proportional area enclosed in the centre piece $A^{\prime} B^{\prime} C^{\prime}$.
6. Arrange 11 points in the plane so that 16 lines can be drawn, each passing through 3 points.

[^0]
## Senior Questions

1. Show that, for $x \in(-1,1)$

$$
\frac{1}{1+x}=1-x+x^{2}-x^{3}+\cdots
$$

and hence show that

$$
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots
$$

2. Using the above, how many terms are needed to approximate $\ln (2)$ correctly to 5 decimal places?

[^0]:    ${ }^{1}$ Some problems from UNSW's publication Parabola

