MATHEMATICS ENRICHMENT CLUB. Problem Sheet 2, May 13, $2014{ }^{1}$

1. (a) Show that 120 is a divisor of $n^{5}-5 n^{3}+4 n$ for every integer n.
(b) Show that 49 is not a divisor of $n^{2}+n+2$ for every integer n.
2. Three people, A, B and C, entered a competition. After the event, A reported " B was second, C was first". B said, " A was second, C was third". C said, " A was first, B was third". Each person's report contained one true statement and one false one. Which of A and B performed better in the competition.
3. A powerful number is an integer whose prime factors, when squared, remain factors. A perfect power is an integer which can be written as another integer to an integer power. Find the smallest positive integer which is powerful but not a perfect power.
4. $A B C D$ is a square whose centre is O. A line is drawn as shown, and the points labelled $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ and O^{\prime} are the feet of the perpendiculars dropped from A, B, C, D and O to the line. If $A A^{\prime} \times C C^{\prime}=B B^{\prime} \times D D^{\prime}$ and $A B=2$ find the length of $O O^{\prime}$. Prove your result.

[^0]5. Find all pairs of integers x and y such that $x^{3}-y^{3}=1729$. Show that there are no others.
6. Two 10-digit integers are called neighbours if they differ in exactly one digit (for example 1234567890 and 1234507890 are neighbours). How many numbers are in the largest possible collection of 10 -digit numbers, in which no two are neighbours.

Senior Questions

These three questions will all be about the function $f(x)=2 x \bmod 1$ for $0 \leq x<1$, namely what happens when we repeatedly apply f to numbers between 0 and 1 . In this way we can produce sequences (called trajectories) $x_{0}, x_{1}, x_{2}, \ldots$ using the rule

$$
x_{i+1}=f\left(x_{i}\right) .
$$

Note: we could also write f as

$$
f(x)= \begin{cases}2 x & \text { if } 0 \leq x<\frac{1}{2} \\ 2 x-1 & \text { if } \frac{1}{2} \leq x<1\end{cases}
$$

1. A "periodic point" of f is a number x_{0} such that for an integer $T>0, x_{T}=x_{0}$. By considering the action of f in base 2 , find a periodic point of f.
2. Suppose a rational number x_{0} is not a periodic point of f, find $\lim _{n \rightarrow \infty} x_{n}$.
3. Show that for any numbers $a, b, 0 \leq a<b<1$ and any irrational $x_{0}, 0 \leq x_{0}<1$ there is an $N>0$ so that $a<x_{N}<b$.

[^0]: ${ }^{1}$ Some problems from UNSW's publication Parabola, and the Tournament of Towns in Toronto

