MATHEMATICS ENRICHMENT CLUB. Problem Sheet 9, July 22, 2014

Theorem 0.1 (The law of the lever). Two objects at positions o_{1}, o_{2} lie on a lever with mass m_{1}, m_{2} and distance to the fulcrum at position f given by $d_{1}=f-o_{1}, d_{2}=o_{2}-f$. The objects balance when

$$
m_{1} d_{1}=m_{2} d_{2}
$$

Figure 1: Archimedes law of the lever: balance is achieved when $m_{1} d_{1}=m_{2} d_{2}$.

1. Verify the law of the lever using the objects around you.
2. The law of the lever remains true for negative mass. Negative mass corresponds to an upward force on the lever, called effort. Give examples of the following levers:

Type I the fulcrum is in the middle of positive masses (i.e. a see-saw). Give an example where the masses are both negative.
Type II a positive mass is between effort and a fulcrum (i.e. a wheelbarrow).
Type III effort is between a postive mass and a fulcrum (i.e. tweezers).

[^0]3. Archimedes weighs 60 kilograms. The earth weighs 6×10^{24} kilograms. Archimedes is given a fulcrum and lever. The Earth is 2 meters away from the fulcrum. How far away does Archimedes have to stand, so that his weight moves the earth?

Figure 2: Give me but a firm spot on which to stand, and I shall move the earth - Archimedes
4. The levers in the figure below balance. Given $d 1: d 2$ and $d 3: d 4$ are in the ratio $1: 2$:
(a) What is the total mass supported by the smaller lever?
(b) Given $m_{1}=6$ kilograms, calculate the masses m_{3}, m_{4}.
(c) Construct a new law of the lever with one fulcrum and three masses.

Figure 3: levers on levers
5. Given an infinite number of bricks of length 2 and equal mass.

(a) How many bricks do you need to stack until the top one completely overhangs the bottom?
(b) Verify your answer using the objects arround you.
(c) (challenge) how far can the bricks overhang?
6. Consider a (weightless) triangle $A B C$.
(a) Place weights of mass 1 at A and B. Where is the centre of mass? (i.e. where is the fulcrum that balances this triangle?)
(b) Now place a weight of mass 1 at C. Where did the centre of mass go?
(c) If the surface has equal mass all over, where is the centre of mass?
7. Consider a convex quadrilateral $A B C D$.
(a) If the verticies have equal mass, and the rest of the quadrilateral is weightless, find the centre of mass (called this the vertex centroid).
(b) If the sides have equal mass per unit length, find the centre of mass (called the side centroid).
(c) If the surface has equal mass all over, find the centre of mass (called the centroid).
(d) (challenge) what can you say about these three centroids.
8. How-to-Centre-of-Mass: Take a 2-dimensional object. Make a hole in that object. Hang the object in the air through the hole. The centre of mass is directly below the hole.
(a) Use this information to find the the centre of mass of an irregular object.
(b) How many times did you have to hang the object?
(c) (challenge) repeat for a 3 dimensional object.
9. The centres of mass of the Earth (E) and Moon (M) orbit each other about an invisible fulcrum, called the barycentre $B_{E M}$.
(a) Given that the distance $E M$ is $384,000 \mathrm{~km}$ and the distance $E B_{E M}$ is $4,670 \mathrm{~km}$, calculate the mass of the Moon relative to the mass of the Earth.
(b) Let S be the centre of mass of the Sun. Given that the sun is 333,000 times heavier than E, where is the Earth-Sun Barycentre $B_{E S}$?
(c) The centres of mass of Pluto P and Charon C are $19,600 \mathrm{~km}$ apart, and the distance from P to its barycentre $B_{P C}$ is $2,110 \mathrm{~km}$. Calculate the mass of Pluto relative to Charon.

Senior Question

In 2012, a powerful spectropgraph measured a small change in the blue-shift of Alpha Centauri $\mathrm{B}(B)$ with maximum velocity 0.5 meters per second (you could walk faster). This wobble had a period of 28×10^{4} seconds. As in question 9, wobble indicates the presenece of an unseen companion called Alpha Centauri $\mathrm{Bb}(B b)$. The centres of mass of B and $B b$ are $6 \times 10^{6} \mathrm{~km}$ apart.

1. Draw a diagram showing the orbit of $B b$ about Alpha Centauri B, and Earth.
2. Show that the barycentre $B_{B B b}$ is at least 22 km away from B (approx to the nearest km).
3. Given that the mass of B is 3×10^{5} "Earth Units". Show that minimum mass of $B b$ is 1.1 Earth Units (about one Earth).

[^0]: ${ }^{1}$ Archimedes and the law of the lever - special edition. These questions form part of a professional development course for high school mathematics teachers developed at UNSW

