

MATHEMATICS ENRICHMENT CLUB. Problem Sheet 9, July 22, 2014¹

Theorem 0.1 (The law of the lever). Two objects at positions o_1, o_2 lie on a lever with mass m_1, m_2 and distance to the fulcrum at position f given by $d_1 = f - o_1, d_2 = o_2 - f$. The objects balance when

$$m_1d_1 = m_2d_2$$

Figure 1: Archimedes law of the lever: balance is achieved when $m_1d_1 = m_2d_2$.

1. Verify the law of the lever using the objects around you.

Science

- 2. The law of the lever remains true for negative mass. Negative mass corresponds to an upward force on the lever, called effort. Give examples of the following levers:
 - **Type I** the fulcrum is in the middle of positive masses (i.e. a see-saw). Give an example where the masses are both negative.
 - Type II a positive mass is between effort and a fulcrum (i.e. a wheelbarrow).
 - Type III effort is between a postive mass and a fulcrum (i.e. tweezers).

¹Archimedes and the law of the lever - special edition. These questions form part of a professional development course for high school mathematics teachers developed at UNSW

3. Archimedes weighs 60 kilograms. The earth weighs 6×10^{24} kilograms. Archimedes is given a fulcrum and lever. The Earth is 2 meters away from the fulcrum. How far away does Archimedes have to stand, so that his weight moves the earth?

Figure 2: Give me but a firm spot on which to stand, and I shall move the earth - Archimedes

- 4. The levers in the figure below balance. Given d1:d2 and d3:d4 are in the ratio 1:2:
 - (a) What is the total mass supported by the smaller lever?
 - (b) Given $m_1 = 6$ kilograms, calculate the masses m_3, m_4 .
 - (c) Construct a new law of the lever with one fulcrum and three masses.

Figure 3: levers on levers

5. Given an infinite number of bricks of length 2 and equal mass.

- (a) How many bricks do you need to stack until the top one completely overhangs the bottom?
- (b) Verify your answer using the objects arround you.
- (c) (challenge) how far can the bricks overhang?
- 6. Consider a (weightless) triangle ABC.
 - (a) Place weights of mass 1 at A and B. Where is the centre of mass? (i.e. where is the fulcrum that balances this triangle?)
 - (b) Now place a weight of mass 1 at C. Where did the centre of mass go?
 - (c) If the surface has equal mass all over, where is the centre of mass?
- 7. Consider a convex quadrilateral ABCD.
 - (a) If the verticies have equal mass, and the rest of the quadrilateral is weightless, find the centre of mass (called this the vertex centroid).
 - (b) If the sides have equal mass per unit length, find the centre of mass (called the side centroid).
 - (c) If the surface has equal mass all over, find the centre of mass (called the centroid).
 - (d) (challenge) what can you say about these three centroids.
- 8. How-to-Centre-of-Mass: Take a 2-dimensional object. Make a hole in that object. Hang the object in the air through the hole. The centre of mass is directly below the hole.
 - (a) Use this information to find the centre of mass of an irregular object.
 - (b) How many times did you have to hang the object?
 - (c) (challenge) repeat for a 3 dimensional object.

- 9. The centres of mass of the Earth (E) and Moon (M) orbit each other about an invisible fulcrum, called the *barycentre* B_{EM} .
 - (a) Given that the distance EM is 384,000km and the distance EB_{EM} is 4,670km, calculate the mass of the Moon relative to the mass of the Earth.
 - (b) Let S be the centre of mass of the Sun. Given that the sun is 333,000 times heavier than E, where is the Earth-Sun Barycentre B_{ES} ?
 - (c) The centres of mass of Pluto P and Charon C are 19,600km apart, and the distance from P to its barycentre B_{PC} is 2,110km. Calculate the mass of Pluto relative to Charon.

Senior Question

In 2012, a powerful spectropgraph measured a small change in the blue-shift of Alpha Centauri B (B) with maximum velocity 0.5 meters per second (you could walk faster). This wobble had a period of 28×10^4 seconds. As in question 9, wobble indicates the presence of an unseen companion called Alpha Centauri Bb (Bb). The centres of mass of B and Bb are 6×10^6 km apart.

- 1. Draw a diagram showing the orbit of Bb about Alpha Centauri B, and Earth.
- 2. Show that the barycentre B_{BBb} is at least 22km away from B (approx to the nearest km).
- 3. Given that the mass of B is 3×10^5 "Earth Units". Show that minimum mass of Bb is 1.1 Earth Units (about one Earth).