MATHEMATICS ENRICHMENT CLUB. Problem Sheet 10, July 21, $2015{ }^{1}$

1. Find the sum of all n-digits long numbers formed by $1,2,3, \ldots, n$. For example, if $n=3$ then the sum of all 3 -digit long numbers is $123+132+213+231+312+321=1332$.
2. Evaluate $\sqrt[4]{2} \times \sqrt[8]{4} \times \sqrt[16]{8} \times \sqrt[32]{16} \times \sqrt[64]{32} \ldots$
3. Several positive integers are written on a blackboard. The sum of any two of them is some power of two (for example, $2,4,8, \ldots$). What is the maximal possible number of different integers on the blackboard?
4. Bob is building two roads to connect the points A and B. For any real number x, the two roads must have a length ratio of $\sqrt{(x+4)^{2}+4}$ to $\sqrt{(x-4)^{2}+16}$. Bob picks x then claims his design gives the shortest combine length of the two roads, what must this combine length be?

5. For a triangle $\triangle A B C, M$ is the midpoint of the side $A B$ and L is some point along the side $B C$. Let O be the point of intersection between the lines $L A$ and $M C$, and let K be the point of intersection between $L A$ and the line passing through M, parallel to $B C$; see above
(a) Show that the triangles $\triangle K M O$ and $\triangle O L C$ are similar.
(b) Suppose the length $L A$ is twice as long as $M C$, and $\angle O L C=45^{\circ}$. Prove $L A$ is perpendicular to $M C$.
6. Consider the polynomial $p(x)=x^{4}+37 x^{3}+71 x^{2}+18 x+3$. If a, b, c and d are roots of $p(x)$, find a polynomial whose roots are $\frac{a b c}{d}, \frac{a c d}{b}, \frac{a b d}{c}$ and $\frac{b c d}{a}$.
[^0]
Senior Questions

The following questions concerns the irrationality of π. Recall that a number is irrational if it can not be written as $\frac{a}{b}$, where a and b are positive integers. We will study a function defined by

$$
f(x)=\frac{x^{n}(a-b x)^{n}}{n!},
$$

where n is some positive integer.

1. Let $f^{(k)}(x)$ denote the $k^{\text {th }}$ derivative of f, where $k=0,1,2, \ldots$. Show that for each k
(a) $f^{(k)}(0)$ is an integer.
(b) $f^{(k)}(0)=(-1)^{k} f^{(k)}(\pi)$.
2. Let $G(x)=f(x)-f^{(2)}(x)-f^{(4)}(x)+f^{(6)}(x)-\ldots+(-1)^{n} f^{(2 n+2)}(x)$.
(a) Show that $f(x)=G(x)+G^{(2)}(x)$.
(b) By considering the function $G^{(1)} \sin (x)-G(x) \cos (x)$ and the result of part (a), show that $\int_{0}^{\pi} f(x) \sin (x) d x=G(0)-G(\pi)$.
3. Show that

$$
0<\int_{0}^{\pi} f(x) \sin (x) d x<\frac{a^{n} \pi^{n+1}}{n!}
$$

Hence by using the results of 1 . and 2 ., show that π is irrational.

[^0]: ${ }^{1}$ Some problems from Tournament of Towns in Toronto.

