

MATHEMATICS ENRICHMENT CLUB. Problem Sheet 10, July 21, 2015¹

- 1. Find the sum of all *n*-digits long numbers formed by $1, 2, 3, \ldots, n$. For example, if n = 3 then the sum of all 3-digit long numbers is 123 + 132 + 213 + 231 + 312 + 321 = 1332.
- 2. Evaluate $\sqrt[4]{2} \times \sqrt[8]{4} \times \sqrt[16]{8} \times \sqrt[32]{16} \times \sqrt[64]{32} \dots$

Science

- 3. Several positive integers are written on a blackboard. The sum of any two of them is some power of two (for example, 2, 4, 8,...). What is the maximal possible number of different integers on the blackboard?
- 4. Bob is building two roads to connect the points A and B. For any real number x, the two roads must have a length ratio of $\sqrt{(x+4)^2+4}$ to $\sqrt{(x-4)^2+16}$. Bob picks x then claims his design gives the shortest combine length of the two roads, what must this combine length be?

- 5. For a triangle $\triangle ABC$, M is the midpoint of the side AB and L is some point along the side BC. Let O be the point of intersection between the lines LA and MC, and let K be the point of intersection between LA and the line passing through M, parallel to BC; see above
 - (a) Show that the triangles $\triangle KMO$ and $\triangle OLC$ are similar.
 - (b) Suppose the length LA is twice as long as MC, and $\angle OLC = 45^{\circ}$. Prove LA is perpendicular to MC.
- 6. Consider the polynomial $p(x) = x^4 + 37x^3 + 71x^2 + 18x + 3$. If a, b, c and d are roots of p(x), find a polynomial whose roots are $\frac{abc}{d}$, $\frac{acd}{b}$, $\frac{abd}{c}$ and $\frac{bcd}{a}$.

¹Some problems from Tournament of Towns in Toronto.

Senior Questions

The following questions concerns the irrationality of π . Recall that a number is irrational if it can not be written as $\frac{a}{b}$, where a and b are positive integers. We will study a function defined by

$$f(x) = \frac{x^n(a - bx)^n}{n!},$$

where n is some positive integer.

- 1. Let $f^{(k)}(x)$ denote the k^{th} derivative of f, where $k=0,1,2,\ldots$ Show that for each k
 - (a) $f^{(k)}(0)$ is an integer.
 - (b) $f^{(k)}(0) = (-1)^k f^{(k)}(\pi)$.
- 2. Let $G(x) = f(x) f^{(2)}(x) f^{(4)}(x) + f^{(6)}(x) \dots + (-1)^n f^{(2n+2)}(x)$.
 - (a) Show that $f(x) = G(x) + G^{(2)}(x)$.
 - (b) By considering the function $G^{(1)}\sin(x) G(x)\cos(x)$ and the result of part (a), show that $\int_0^{\pi} f(x)\sin(x) dx = G(0) G(\pi)$.
- 3. Show that

$$0 < \int_0^{\pi} f(x) \sin(x) \, dx < \frac{a^n \pi^{n+1}}{n!}.$$

Hence by using the results of 1. and 2., show that π is irrational.