MATHEMATICS ENRICHMENT CLUB.
Problem Sheet 11, July 28, 2015

1. Alice and Carla are playing a dice game. Here’s how it works:
 • Each person rolls a die, and the highest number rolled of the two is recorded.
 • If the highest number rolled is a 1, 2, 3 or 4, Alice wins.
 • If the highest number rolled is a 5 or a 6, Carla wins.

 On average, who is more likely to win: Alice, Carla, or are the probabilities equal?

2. Find the remainder when x^{1999} is divided by $x^2 - 1$.

3. How many 3 digit positive integer is/are the sum of exactly 9 distinct powers of 2?

4. Given that $a + b = 1$ and $a^2 + b^2 = 2$, what is the value of $a^7 + b^7$?

5. Let $\triangle ABC$ be right-angled. Let A' be the mirror image of the point A in the side BC, let B' be the mirror image of B in AC and C' the mirror image of B in AB; see above. Find the ratio

 $$\frac{\text{area}(\triangle ABC)}{\text{area}(\triangle A'B'C')}$$.

6. Find all positive integers n for which all of the numbers

 $$n, 2n - 1, 2n + 5, 3n - 2, 5n - 4, 6n - 5, \text{ and } 12n + 5$$

 are prime. (Note the integer 1 is not prime).

1Some problems from UNSW’s publication Parabola, and the Tournament of Towns in Toronto.
Senior Questions

1. Find all solutions of $2^x + 3^x + 6^x = x^2$.

2. Let $f(x) = x + \int_0^1 (xy^2 + x^2 y)f(y) \, dy$. Find the value of $f(10)$.

3. Denote by $[a, b]$ the least common multiple of a and b. Let n be a positive integer such that

$$[n, n + 1] > [n, n + 2] > \ldots > [n, n + 35].$$

Prove that $[n, n + 35] > [n, n + 36]$.