## MATHEMATICS ENRICHMENT CLUB. Problem Sheet 11, July 28, $2015{ }^{1}$

1. Alice and Carla are playing a dice game. Here's how it works:

- Each person rolls a die, and the highest number rolled of the two is recorded.
- If the highest number rolled is a $1,2,3$ or 4 , Alice wins.
- If the highest number rolled is a 5 or a 6 , Carla wins.

On average, who is more likely to win: Alice, Carla, or are the probabilities equal?
2. Find the remainder when $x^{1999}$ is divided by $x^{2}-1$.
3. How many 3 digit positive integer is/are the sum of exactly 9 distinct powers of 2 ?
4. Given that $a+b=1$ and $a^{2}+b^{2}=2$, what is the value of $a^{7}+b^{7}$ ?

5. Let $\triangle A B C$ be right-angled. Let $A^{\prime}$ be the mirror image of the point $A$ in the side $B C$, let $B^{\prime}$ be the mirror image of $B$ in $A C$ and $C^{\prime}$ the mirror image of $B$ in $A B$; see above. Find the ratio

$$
\operatorname{area}(\triangle A B C) / \operatorname{area}\left(\triangle A^{\prime} B^{\prime} C^{\prime}\right)
$$

6. Find all positive integers $n$ for which all of the numbers

$$
n, 2 n-1,2 n+5,3 n-2,5 n-4,6 n-5, \text { and } 12 n+5
$$

are prime. (Note the integer 1 is not prime).

[^0]
## Senior Questions

1. Find all solutions of $2^{x}+3^{x}+6^{x}=x^{2}$.
2. Let $f(x)=x+\int_{0}^{1}\left(x y^{2}+x^{2} y\right) f(y) \mathrm{d} y$. Find the value of $f(10)$.
3. Denote by $[a, b]$ the least common multiple of $a$ and $b$. Let $n$ be a positive integer such that

$$
[n, n+1]>[n, n+2]>\ldots>[n, n+35] .
$$

Prove that $[n, n+35]>[n, n+36]$.


[^0]:    ${ }^{1}$ Some problems from UNSW's publication Parabola, and the Tournament of Towns in Toronto.

