MATHEMATICS ENRICHMENT CLUB. Solution Sheet 10, July 21, $2015{ }^{\text {¹ }}$

1. Given a n-digits long number, if we fix the last digit (say let it be 1), then there are $(n-1)$! ways to arrange the rest of the $n-1$ digits (say $2,3, \ldots, n$) to get a different n-digits long number. Hence, each of $1,2, \ldots, n$ will appear $(n-1)$! times in the last digit of the n-digits long number. Therefore the last digit of all combinations of n-digit long numbers contributes to the sum by an amount of $(n-1)!\times(1+2+3+\ldots+n)$.
We can make a similar argument by fixing the second last digit, so that the second last digit of all combinations of n-digits long numbers contributes to the sum by an amount of $(n-1)!\times(1+2+3+\ldots+n) \times 10$.
Repeating this for all digits, then the total sum is $(n-1)!\times(1+2+3+\ldots+n) \times$ $\left(1+10+10^{2}+\ldots+10^{n}\right)$.
2. Note that $\sqrt[4]{2} \times \sqrt[8]{4} \times \sqrt[16]{8} \times \sqrt[32]{16} \times \sqrt[64]{32} \ldots=\sqrt[4]{2} \times \sqrt[8]{2^{2}} \times \sqrt[16]{2^{3}} \times \sqrt[32]{2^{4}} \times \sqrt[64]{2^{5}} \ldots$ Hence we can rewrite this product as

$$
2^{\frac{1}{4}} \times 2^{\frac{2}{8}} \times 2^{\frac{3}{16}} \times 2^{\frac{4}{32}} \times 2^{\frac{5}{64}} \ldots=2^{\frac{1}{4}+\frac{2}{8}+\frac{3}{16}+\frac{4}{32}+\frac{5}{64}} \ldots
$$

Which means that all we need to find is the infinite sum $x=1 / 4+2 / 8+3 / 16+4 / 32+$ $5 / 64+\ldots$ The trick here is to compare x with $x / 2$:

$$
\begin{aligned}
x-\frac{x}{2} & =\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\ldots \\
\frac{x}{2} & =\frac{1 / 4}{1-1 / 2} \\
x & =1 .
\end{aligned}
$$

We conclude that product of the surds is 2 .
3. Let a be the greatest number written on a blackboard, pick another integer b on the board, then $a \geq b$. Furthermore, there is an integer $n \geq 0$ such that $2^{n} \leq a<2^{n+1}$, so that $2^{n}<a+b \leq 2 a<2^{n+2}$. Since $a+b$ must be a power of two, we must have $a+b=2^{n+1}$. Because b is an arbitrary integer we picked and there is only one choice of n, we can conclude that $2^{n+1}-a$ is the only other integer on the board; there is only two numbers on the board.

[^0]
4. Consider the above diagram. By Pythagoras, $a=\sqrt{(4+x)^{2}+4}$ and $b=\sqrt{(x-4)^{2}+16}$; the two roads that connects the point A to B has length a and b. The total length of the roads; that is $a+b$ is minimised when the two lines $A C$ and $C B$ in the diagram are co-linear. Therefore, the combine length of the two roads is $\sqrt{(2+4)^{2}+8^{2}}=10$.

5. (a) Since the lines $K M$ and $C B$ are parallel, the triangles $\triangle K M O$ and $\triangle O L C$ are similar. In particular, by angles and ratios we have the formula
$$
\frac{|K O|}{|K L|-|K O|}=\frac{|O M|}{|M C|-|O M|} .
$$
(b) Since M is the midpoint of $A B$ and the line $K M, C B$ are parallel, by the midpoint theorem K is the midpoint of $A L$. Additionally, by using the fact that $2|M C|=$ $|A L|$, we have $|K L|=|M C|$. Now substituting $|K L|=|M C|$ into the formula from part (a), we obtain $|K O|=\mid O M$. Therefore the triangles $\triangle K M O$ and $\triangle O L C$ are isosceles. Finally, using the condition $\angle O L C=45^{\circ}$ we have $\angle C O L=$ 90°.
6. Since the constant coefficient of $p(x)$ is $3, a b c d=3$. Therefore,
$$
\frac{a b c}{d}=\frac{3}{d^{2}}, \quad \frac{a c d}{b}=\frac{3}{b^{2}}, \quad \frac{a b d}{c}=\frac{3}{c^{2}}, \quad \frac{b c d}{a}=\frac{3}{a^{2}} .
$$

Let $y=3 / x^{2}$, then $p(\sqrt{3 / y})=0$ when $p(x)=0$. Therefore rearranging $p(\sqrt{3 / y})=0$ gives a polynomial of y with the required roots.

[^0]: ${ }^{1}$ Some problems from Tournament of Towns in Toronto.

