

MATHEMATICS ENRICHMENT CLUB. Problem Sheet 12, August 2, 2015¹

1. (a) Show that the number $2017^{46} - 46$ is not prime.

Science

- (b) Show that the number $2017^{46} + 46$ is not prime.
- 2. The polynomial $x^3 + px^2 x + q$ as a factor (x 5) and a remainder of 24 when divided by (x 1). Find the values of p and q.
- 3. Let A(-13, 14), B(-3, -5) and C(7, 11) be the coordinate of vertices of a triangle $\triangle ABC$. Find the coordinate of the point P inside $\triangle ABC$ such that the triangle $\triangle PBC$ is equilateral.
- 4. An arithmetic sequence has positive integral entries. The sum of some 4 consecutive terms is 30. The some of some 5 consecutive terms is 30. Find the least number of terms overlapping in the two subsequences.
- 5. Let $f(x) = \frac{4^x}{4^x + 2}$. Calculate

$$f\left(\frac{1}{2015}\right) + f\left(\frac{2}{2015}\right) + \ldots + f\left(\frac{2014}{2015}\right).$$

6. In a convex quadrilateral ABCD the diagonals are perpendicular. Points M and N are marked on the sides AD and CD respectively. Suppose the $\angle ABN$ and $\angle CBM$ are right-angles, prove that the lines AC and MN are parallel.

¹Some problems from UNSW's publication Parabola and the Tournament of Towns in Toronto.

Senior Questions

- 1. Let [x] denote the greatest integer less than or equal to x. If α, β and γ are the roots of the function $f(x) = x^3 + x^2 5x 1$, find $[\alpha] + [\beta] + [\gamma]$.
- 2. Show that if n and m are positive integers, then $(nm)! \geq (m!)^n (n!)^m$.
- 3. Find all positive numbers x and y such that

$$x^{x+y} = y^{x+2y}$$
 and $x^{2x+y} = y^{x+4y}$.