

Never Stand Still

Science

## MATHEMATICS ENRICHMENT CLUB. Problem Sheet 15, August 25, $2015^1$

- 1. How many distinct prime factors does  $2^{32} + 2^{17} + 1$  have?
- 2. Find the last digit of  $1^5 + 2^5 + \ldots + 123^5$ .



- 3. Let A, B and C be the centre of the three circles shown above. The points B and C forms two arcs, with a length difference of  $8\pi/3$  around the circle with centre A. Find the area of the triangle  $\triangle ABC$ .
- 4. Let a > 1 be a positive integer. We obtain the number b by gluing two copies of the digits of a together in order; for example, if a = 123 then b = 123123. If b is a multiple of  $a^2$ , then find all possible values of  $b/a^2$ .
- 5. A  $10 \times 12$  rectangular paper is folded along the grid lines several times, forming a thick  $1 \times 1$  square. How many pieces of paper can we possibly get by cutting the square along the segment connecting
  - (a) the midpoints of a pair of opposite sides;
  - (b) the midpoints of a pair of adjacent sides?
- 6. Consider an arbitrary number a > 0. We know that the inequality  $10 < a^x < 100$  has exactly 5 positive integer solutions. How many solutions in positive integers may the inequality  $100 < a^x < 1000$  have? In each case, list the solutions.

<sup>&</sup>lt;sup>1</sup>Some problems from UNSW's publication *Parabola*, and the *Tournament of Towns in Toronto*.

## Senior Questions

- 1. Seventeen primes  $p_1 < p_2 < \ldots < p_{17}$  have the property that the sum of their squares is also a square. Prove that  $p_{17}^2 p_{16}^2$  is divisible by  $p_1$ .
- 2. Integers 1, 2, ..., 100 are written in a circle, not necessarily in that order. Can it be that the absolute value of the difference between any two adjacent integers is at least 30 and at most 50?
- 3. Twelve knights  $k_1, k_2, \ldots, k_{12}$  are seated in anti-clockwise order around a circular table. What is the minimal number of swaps required to change their order to a clockwise one, if any swap can be made only between adjacent knights? What is the answer if there are thirteen knights?