MATHEMATICS ENRICHMENT CLUB. Problem Sheet 15, August 25, 2015 ${ }^{\text {1 }}$

1. How many distinct prime factors does $2^{32}+2^{17}+1$ have?
2. Find the last digit of $1^{5}+2^{5}+\ldots+123^{5}$.

3. Let A, B and C be the centre of the three circles shown above. The points B and C forms two arcs, with a length difference of $8 \pi / 3$ around the circle with centre A. Find the area of the triangle $\triangle A B C$.
4. Let $a>1$ be a positive integer. We obtain the number b by gluing two copies of the digits of a together in order; for example, if $a=123$ then $b=123123$. If b is a multiple of a^{2}, then find all possible values of b / a^{2}.
5. A 10×12 rectangular paper is folded along the grid lines several times, forming a thick 1×1 square. How many pieces of paper can we possibly get by cutting the square along the segment connecting
(a) the midpoints of a pair of opposite sides;
(b) the midpoints of a pair of adjacent sides?
6. Consider an arbitrary number $a>0$. We know that the inequality $10<a^{x}<100$ has exactly 5 positive integer solutions. How many solutions in positive integers may the inequality $100<a^{x}<1000$ have? In each case, list the solutions.
[^0]
Senior Questions

1. Seventeen primes $p_{1}<p_{2}<\ldots<p_{17}$ have the property that the sum of their squares is also a square. Prove that $p_{17}^{2}-p_{16}^{2}$ is divisible by p_{1}.
2. Integers $1,2, \ldots, 100$ are written in a circle, not necessarily in that order. Can it be that the absolute value of the difference between any two adjacent integers is at least 30 and at most 50 ?
3. Twelve knights $k_{1}, k_{2}, \ldots, k_{12}$ are seated in anti-clockwise order around a circular table. What is the minimal number of swaps required to change their order to a clockwise one, if any swap can be made only between adjacent knights? What is the answer if there are thirteen knights?

[^0]: ${ }^{1}$ Some problems from UNSW's publication Parabola, and the Tournament of Towns in Toronto.

