MATHEMATICS ENRICHMENT CLUB. Solution Sheet 14, August 18, 2015^{11}

1. Let x be the number of cards removed. The probability to draw an ace from the reduced deck is $4 /(52-x)$, the second ace $3 /(52-x-1)$, the third $2 /(52-x-2)$ and last $1 /(52-x-3)$. Multiplying gives

$$
\frac{4}{52-x} \times \frac{3}{52-x-1} \times \frac{2}{52-x-2} \times \frac{1}{52-x-3}=\frac{1}{1001} .
$$

Solving for the above gives $x=38$.
2. Since $1+2!+3!=9=3^{2}$, we know that $n=3$ is a possible solution to the problem. We show that $n=3$ is the largest solution. Observe that for any number to be a perfect square, it cannot end in the digit 3 . Since $1+2!+3!+4!=33, n=4$ is not a solution. Moreover, n ! contains the both factors 2 and 5 for $n>4$, therefore n ! ends in the digit 0 for $n>4$. We can now conclude that the number $1+2!+3!+\ldots+(n-1)!+n$! ends in the digit 3 for $n>4$, thus cannot be a perfect square.
3. Since we are adding consecutive numbers, we know that $a_{2}=a_{1}+1, a_{3}=a_{1}+$ $2, \ldots, a_{100}=a_{1}+99$. Therefore, we can write

$$
\begin{aligned}
\sqrt{a_{2}+a_{3}+\ldots+a_{99}}-\sqrt{a_{1}+a_{100}} & =\sqrt{98 a_{1}+1+2+\ldots+98}-\sqrt{2 a_{1}+99} \\
& =\sqrt{99 a_{1}+4851}-\sqrt{2 a_{1}+99}
\end{aligned}
$$

The second line of the equation above is minimal when $a_{1}=1$.
4. Let $a b c$ and efg be three digit numbers. Then we can write the initial 6 -digits number x as

$$
x=1000 \times a b c+e f g
$$

Also

$$
6 x=1000 \times e f g+a b c .
$$

Combining the above two equations gives $5999 \times a b c=994 \times e f g$, which can be further simplified to $857 \times a b c=142 \times$ efg. Hence the number we are after is 142857 .

[^0]5. To have all frogs the same colour, we must first reach a situation where there is a same number of frogs of two different colours. So we can think about this problem in terms of the difference between the number of frogs having two different colours, then it is possible to have all frogs the same colour if this number is zero for any combination of two colours; For example, initial this number is 1 if we compare brown with green or green with yellow, and 2 if we compare brown with yellow.
Now in an event of two frogs with different colours meeting, both frogs change colour to the third, so the number of frogs of different colours either change by 3 or remain the same. Since we started with a difference number of 1 or 2 , and can only change this number by 3 , it is not possible to get a same number of frogs of two different colours.

6. See diagram above. Let $\angle B A C=a, \angle A B C=b$ and $\angle A C B=c$. Further, using similarity of the triangles $\triangle Y B A, \triangle Z A C$ and $\triangle X B C$, let us denote
\[

$$
\begin{aligned}
& \angle Y A B=\angle Z C A=\angle X C B=\alpha, \\
& \angle Y B A=\angle Z A C=\angle X B C=\beta, \\
& \angle A Y B=\angle C Z A=\angle C X B=\gamma .
\end{aligned}
$$
\]

(a) Since the $\triangle Y B A$ is similar to $\triangle X B C$, we have $Y B: A B=X B: B C$. It follows that $Y B: B X=A B: B C$. Since $\angle Y B A=\angle X B C$ we have $\angle Y B X=b$. Therefore $\triangle Y B X$ is similar to $\triangle A B C$.
We can use the similarity of $\triangle Z A C$ and $\triangle X B C$ and follow the same steps as before, to show that $\triangle Z X C$ is similar to $\triangle A B C$.
(b) The similarity between $\triangle Y B X$ and $\triangle Z X C$ to $\triangle A B C$ implies $\angle X Y B=a$, $\angle Y X B=c$ and $\angle X Z C=a, \angle Z X C=b$. Therefore

$$
\angle A Y X=\angle A Y B-\angle X Y B=\gamma-a
$$

and

$$
\angle A Z X=\angle A Z C-\angle X Z C=\gamma-a .
$$

Therefore, a pair of opposite angles of the quadrilateral $A Y X Z$ is equal. Further,

$$
\begin{array}{r}
\angle Y X Z=360^{\circ}-\angle Y X B-\angle Z X C-\angle B X C=360^{\circ}-c-b-\gamma \\
=\left(180^{\circ}-c-b\right)+\left(180^{\circ}-\gamma\right)=a+\alpha+\beta=\angle Y A Z
\end{array}
$$

thus the other pair of angles of $A Y X Z$ are also equal.

Senior Questions

1. Using the method of partial fractions, we can write

$$
\frac{2 n-1}{n(n+1)(n+2)}=\frac{-1}{2 n}+\frac{3}{n+1}+\frac{-5}{2(n+2)}
$$

So if we let $S=\sum_{n=1}^{25} \frac{1}{n}$, then

$$
\begin{aligned}
\sum_{n=1}^{25} \frac{2 n-1}{n(n+1)(n+2)} & =\sum_{n=1}^{25} \frac{-1}{2 n}+\frac{3}{n+1}+\frac{-5}{2(n+2)} \\
& =\sum_{n=1}^{25} \frac{-1}{2 n}+\sum_{n=1}^{25} \frac{3}{n+1}+\sum_{n=1}^{25} \frac{-5}{2(n+2)} \\
& =\sum_{n=1}^{25} \frac{-1}{2 n}+3 \sum_{n=2}^{26} \frac{1}{n}-\frac{5}{2} \sum_{n=3}^{27} \frac{1}{n} \\
& =\frac{-1}{2} S+3\left(-1+S+\frac{1}{26}\right)-\frac{5}{2}\left(-1-\frac{1}{2}+S+\frac{1}{26}+\frac{1}{27}\right)=\frac{475}{702} .
\end{aligned}
$$

2. Let M, N be the centres, and r, R the radii of the smaller and larger circles respectively; as shown above. Denote the angle $\angle M N P$ by θ. By the cosine rule in $\triangle A N P$ we have

$$
|P A|^{2}=2 R^{2}-2 R^{2} \cos \theta=2 R^{2}(1-\cos \theta)
$$

Similarly, the cosine rule in $\triangle M N P$ gives

$$
|P M|^{2}=R^{2}+(R-r)^{2}-2 R(R-r) \cos \theta,
$$

and since $\angle M T P$ is right angle, we can apply Pythagoras on $\triangle P M T$ to obtain

$$
|P T|^{2}=|P M|^{2}-r^{2}=2 R(R-r)(1-\cos \theta)
$$

Therefore, we have

$$
\frac{|P T|}{|P A|}=\sqrt{\frac{R-r}{R}}
$$

which is constant.
3. The answer is yes.

[^0]: ${ }^{1}$ Some problems from UNSW's publication Parabola, and the Tournament of Towns in Toronto.

