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1. If we fix x = 0, then there are 100 choices for y. If we fix x = 1, then there are
99 choices for y, and so on. So the total number of ways to pick x and y such that
x+ y ≤ 100 is equal to 1 + 2 + 3 + . . .+ 100 = 100

2
[2 + (100− 1)× 1] = 5050.

2. It doesn’t matter which prime you pick. If p2 + a2 = b2 then

p2 = b2 − a2

= (b− a)(b+ a).

Because p is prime, the only divisor of p2 is 1, p and p2. Since a and b are integers, by
the above equation, b− a = 1 and b+ a = p2, so that a+b

p
= p.

3. The diagonal of the square is the diameter of the circle, hence the area of the circle is
π.

By Pythagoras the length of the sides of the square is
√

2. The area of the square is
therefore 2.

The sides of the square are the diameter of the smaller circles. The area of the four
small half circles are therefore π.

Hence, the area of the shaded region is π − (2− π) = 2.

4. Label the 21 people at the party by a1, a2, . . . , a21. Now a1 knows at most four
other people at the party, by renumbering we can assume that a1 does not know
a6, a7, . . . a21. By renumbering again, we can assume that a6 knows at most four of
a2, a3, a4, a5, a7, a8, a9, a10, therefore a1 and a6 does not know a11, a12, . . . , a21. Simi-
larly by renumbering, a1, a6 and a11 does not know a16, a17 . . . , a21, and a1, a6, a11 and
a16 does not know a21. It follows that a1, a6, a11, a16 and a21 does not know each other
mutually.

5. Set g(x) = f(x) − 2015, then a1, a2, a3, a4, a5 are the roots of g(x), therefore we can
write g(x) = c(x− a1)(x− a2)(x− a3)(x− a4)(x− a5)h(x), where c is some constant
and h(x) a polynomial.

1Some problems from UNSW’s publication Parabola, and the Tournament of Towns in Toronto.
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Now the integral solutions to f(x) = 2016 are the integral solutions to g(x) = 1, but
there is no integral solution to g(x) = 1, because in the expression g(x) = c(x−a1)(x−
a2)(x − a3)(x − a4)(x − a5)h(x), each (x − ai), i = 1, 2, 3, 4, 5 are distinct integers for
any integer x. Also, h(x) and c are integers for any integer x otherwise f(x) will have
non-integer coefficients; multiplying 7 integers in which at least 5 of are distinct can
not give 1.

A
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6. Draw a line parallel to AP that intersects the line BC at the point Q; see above. Note
that the triangles 4AOP and 4AMQ are similar, so by triangles and ratios we have
|OM | = |PQ|. Now to find |OM |

|PC| , all we have to do is work out what portion |PQ|
occupies |PC|.

The triangles4ACP and4MCQ are similar, so by triangle and ratios we have |AC|
|PC| =

|MC|
|QC| . But M is the midpoint of AC, which implies |MC| = 1

2
|AC|, so that

|AC|
|PC|

=
|MC|
|QC|

=
1

2

|AC|
|QC|

.

It follows that 2|QC| = |PC|, which implies 2|PQ| = |PC|, and therefore |OM |
|PC| = 1

2
.

Senior Questions

1. I am not sure if there are suppose to be additional conditions on the roots or coefficients
of P (x), here is my reasoning to why I can not find such an N without additional
assumptions: First we evaluate the polynomial at x = 1, this gives P (1) = a99 + a98 +
. . .+ a2 + a1 + 1 = 1 +

∑99
i=1 ai. Therefore, the problem is to find the largest integer N

such that
99∑
i=1

ai = p(1)− 1 ≥ 2(2N − 1).

So we look for the maximum lower bound for P (1). Because the polynomial P (x) has
100 roots, we can express it as P (x) = (x + r1)(x + r2) . . . (x + r99)(x + r100), where
r1, r2, . . . , r99, r100 are the roots of the P (x) times −1. Now if we were to expand the
RHS of P (x) = (x+r1)(x+r2) . . . (x+r99)(x+r100), then we can equate the coefficients
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of P (x) by

a99 =
100∑
i

ri

a98 =
∑
i<j

rirj

a97 =
∑
i<j<k

rirjrk

...
...

1 = r1r2 . . . r99r100,

where the notation
∑

i<j means the product of all ri with rj over all index such that
i < j, and similarly for

∑
i<j<k; that is the coefficient a99 of P (x) is sum of the negative

of roots of P (x), the coefficient a98 is sum of product of two terms and so on. These
forms the conditions on ri.

Now we may set r1, r2, . . . , r50 = y and r51, r52, . . . , r100 = 1/y, for some positive real
number y, because r1r2 . . . r100 = 1 and each coefficient a1, a2, . . . a99 is positive. But
then P (1) = (1 + y)50(1 + 1/y)50 ≥ (1 + y)50; because y is arbitrary, I can not find such
an N .

2. Let d be the greatest common divisor between x and y, write it as gcd(x, y) = d.
Then we have x = d× x′ and y = d× y′, where x′ and y′ are some integers such that
gcd(x′, y′) = 1. Now in order to show that x+ y is a square, we just need to show that
x′ + y′ = d, because this implies x+ y = d2.

We can rewrite 1
x

+ 1
y

= 1
z

as z(x + y) = xy or equivalently z(x′ + y′) = dx′y′.

Since gcd(x, y, z) = 1, gcd(d, z) = 1. Furthermore, x′ does not divide y′ and visa
versa, therefore gcd(x′ + y′, x′) = gcd(x′ + y′, y′) = 1. It follows from the equation
z(x′ + y′) = dx′y′ that x′ and y′ must divide z, so we have x′y′ = z, which implies
x′ + y′ = d.

3. We start by trying a few values of n to see if we can spot a pattern.

n = 1, 141 + 11 = 25 = 5(5)

n = 2, 142 + 11 = 207 = 3(69)

n = 3, 143 + 11 = 25 = 5(551)

n = 2, 144 + 11 = 207 = 3(12809)

It seems like when n is odd, 14n + 11 is divisible by 5, and when n is even , 14n + 11
is divisible by 3.

If n is even then 14n = 142k = 196k. As 196 has remainder 1 when divided by 3, it
follows that 196k has remainder 1 when divided 3. Therefore 142k + 11 is divisible by
3.

If n is odd, then 14n = 142k+1 = 14 × 142k = 14 × 196k. As 196 as remainder 1 when
divided by 5, it follows that 196k also has remainder 1 when divided by 5, and 14×196k

has remainder 4 when divided by 5. Therefore 142k + 1 + 11 is divisible by 5.
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Hence 14n+ 11 is divisible by 5 and 3 alternately, and can never be prime.
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