MATHEMATICS ENRICHMENT CLUB. Solutions Sheet 8, June 16, $2015^{\text {¹ }}$

1. We have

$$
\begin{aligned}
x^{2}-y^{2} & =1999 \\
(x-y)(x+y) & =1999
\end{aligned}
$$

and since 1999 is prime, either $(x-y)= \pm 1,(x+y)= \pm 1999$ or $(x+y)= \pm 1$, $(x-y)= \pm 1999$; there is a total of four integral solutions to both cases.
2. There are two solutions to this problem: One uses the perimeter of $\triangle A B C$, the other uses the area of $\triangle A B C$.
(a) Hint: Let the point of intersection between the circle and the side $A B$ be P. Then the radius of the inscribed circle is $|A P|$, and the line $P B$ is tangent to the circle at the point P.
(b) Hint: Let M be the middle of the inscribed circle. Then the triangles $\triangle A B M$, $\triangle B C M$ and $\triangle C A M$ all have height equal to the radius of the inscribed circle.
3. A neat trick is to express N as

$$
\underbrace{333 \ldots 333}_{61 \times 3^{\prime} s}=\frac{3}{9}(\underbrace{999 \ldots 999}_{61 \times 9^{\prime} s})=\frac{3}{9}\left(10^{61}-1\right) .
$$

Similarly, $M=\underbrace{666 \ldots 666}_{62 \times 6^{\prime} s}=\frac{6}{9}\left(10^{62}-1\right)$. Now

$$
\begin{aligned}
N \times M & =\frac{2}{9}\left(10^{61}-1\right)\left(10^{62}-1\right) \\
& =\frac{2}{9}\left(10^{61}-1\right) \times 10^{62}-\frac{2}{9}\left(10^{61}-1\right) \\
& =\underbrace{222 \ldots 222}_{61 \times 2^{\prime} s} \underbrace{000 \ldots 000}_{62 \times 0^{\prime} s}-\underbrace{222 \ldots 222}_{61 \times 2^{\prime} s} \\
& =\underbrace{222 \ldots 222}_{60 \times 2^{\prime} s} 19 \underbrace{777 \ldots 777}_{60 \times 7^{\prime} s} 8 .
\end{aligned}
$$

[^0]It is easy to to compute the sum of digits on the last line of the above equation; it is 558.
4. First we note that for positive integers m, n, k and r, if $a=m k+r$, then $a^{x}=n k+r^{x}$ (you may want to show this is true). Now, since $a=a-1+1$, we have $a^{x}=(a-1) m_{1}+1^{x}$ for some positive integer m_{1}, thus $r_{1}=1^{x}=1$. Similarly, since $a=a+1-1$ and x is odd, we have $a^{x}=(a+1) m_{2}-1^{x}=(a+1) m_{2}-1=(a+1)\left(m_{2}-1\right)+a$ for some integer m_{2}, thus $r_{2}=a$. Hence, we can conclude that $r_{1}+r_{2}=a+1$.
5. We can write $x=n+d$, where n is the integral part of x and d the decimal part. Then $[2 x]+[4 x]+[6 x]+[8 x]=20 n+[2 d]+[4 d]+[6 d]+[8 d]$. We scan over the range of d; that is $0<d<1$ to see what positive integer under 1001 can be expressed in the form of $[2 x]+[4 x]+[6 x]+[8 x]$. For example

$$
\begin{array}{lllllllll}
{[2 x]} & + & {[4 x]} & + & {[6 x]} & + & {[8 x]} & & \\
0 & + & 0 & + & 0 & + & 1 & =1, & \text { if } \frac{1}{8} \leq d<\frac{1}{6} . \\
0 & + & 0 & + & 1 & + & 1 & =2, & \text { if } \frac{1}{6} \leq d<\frac{1}{4} . \\
0 & + & 1 & + & 1 & + & 2 & =4, & \text { if } \frac{1}{4} \leq d<\frac{1}{3} . \\
0 & + & 1 & + & 2 & + & 2 & =5, & \text { if } \frac{1}{3} \leq d<\frac{3}{8} . \\
0 & + & 1 & + & 2 & + & 3 & =6, & \text { if } \frac{3}{8} \leq d<\frac{1}{2} .
\end{array}
$$

If we continue with the above calculations, the results are the numbers ending in 3, 7, 8 or 9 can not be expressed in the form $[2 x]+[4 x]+[6 x]+[8 x]$. There are 100 numbers ending in 3 that is less than 1001, and similarly for 7,8 and 9 . Hence there are 600 numbers that can be put into the required form.
6. Let d be the number of kilometres traveled before the tyre switch is made. Then $\frac{d}{x}$ is the proportion of wear on the font tyre before the switch, hence they will travel a further $\left(1-\frac{d}{x}\right) y$ kilometres before the tyres are retired. So the total distance traveled by the font tyre is $d+\left(1-\frac{d}{x}\right) y$. Similarly, the total distance traveled by the rear tyre is $d+\left(1-\frac{d}{y}\right) x$.
Suppose the claim of the advertisement is true, then we must have the following system of inequalities

$$
\begin{align*}
& d+\left(1-\frac{d}{x}\right) y \geq \frac{x+y}{2} \\
& d+\left(1-\frac{d}{y}\right) x \geq \frac{x+y}{2} \tag{}
\end{align*}
$$

Rearranging (*) gives

$$
\begin{aligned}
& d\left(1-\frac{y}{x}\right) \geq \frac{x-y}{2} \\
& d\left(1-\frac{x}{y}\right) \geq \frac{y-x}{2}
\end{aligned}
$$

then by using the assumption that $x<y$, we have

$$
\begin{aligned}
& d \leq \frac{x-y}{2} \times\left(1-\frac{y}{x}\right)^{-1}=\frac{x}{2} \\
& d \geq \frac{x-y}{2} \times\left(1-\frac{x}{y}\right)^{-1}=\frac{y}{2}
\end{aligned}
$$

The last system of inequality does not hold because $x<y$, so we have a contradiction to the advertisement's claim.

Senior Questions

1. Since $\alpha>0,\left(\alpha+\frac{1}{\alpha}\right)^{2}=\alpha^{2}+\frac{1}{\alpha^{2}}+2 \geq 2$. Similarly, $\left(\beta+\frac{1}{\beta}\right)^{2} \geq 2$. Therefore, if r_{1} and r_{2} are the roots of f (assuming $r_{1} \geq r_{2}$ wlog). Then $r_{1} \geq 2$ and $r_{2}<0$, so that $r_{1} r_{2}=c-3<0$, which implies $c<3$.
To get the lower bound on c, we use the quadratic formula $2 \leq r_{1}=(c+1)+$ $\sqrt{(c+1)^{2}-4(c-3)}$. Solving gives $-2 \leq c$.
2. Lets start by looking at the extreme case $B X=X C, C Y=Y A, A Z=Z B$; as shown below. By the Midpoint Theorem, the line $B C$ is parallel to $Z Y$, and the line $A C$ is parallel to $Z X$. Therefore $Z Y B X$ forms a parallelogram, which implies $|B Z|=|Y X|$ and $|Z Y|=|B X|$. By similar arguments, $Z Y X C$ forms a parallelogram, which implies $|Z X|=|Y C|$. Hence, the triangles $\triangle Z Y Z, \triangle B X Z, \triangle X C Y$ and $\triangle X Y Z$ are identical, so that the area of $\triangle X Y Z$ is exactly one quarter.

(a) If we fix Z and Y (recall that $|A Z| \leq|Z B|$ and $|C Y| \leq|A Y|$), then as we move the point X towards the midpoint of $B C$, the area of the triangle $\triangle X Y Z$ is either decreasing or constant. More generally, if we fix any two points of Z, Y or X and move the other towards the midpoint of the side they are located on, then the area of the triangle $\triangle X Y Z$ is decreasing or constant. The smallest possible area of $\triangle X Y Z$ occurs when Z, Y and X are the midpoints of the sides of the triangle $\triangle A B C$; in this case the area of $\triangle X Y Z$ is exactly a quarter of $\triangle A B C$.
(b) This follows immediately from the results of part (a).
3. Square both sides of the equation $\sqrt{a}-b=\sqrt{c}$ and rearranging gives

$$
\sqrt{c}=\frac{a-b^{2}-c}{2 b}
$$

Since the RHS of the above equation is rational, \sqrt{c} must be rational. Write $\sqrt{c}=x / y$, where x and y are integers with greatest common multiplier one. Then $c=x^{2} / y^{2}$, and greatest common multiplier between x^{2} and y^{2} is one. Since c is an integer, x^{2} must be divisible by y^{2}, which can only happen if $y^{2}=1$, because the greatest common multiplier between x^{2} and y^{2} is one. Hence $c=x^{2}$, so that c is a perfect square.
If c is a perfect square, then the equation $\sqrt{a}-b=\sqrt{c}$ implies that a is also a perfect square.
4.

[^0]: ${ }^{1}$ Some problems from UNSW's publication Parabola.

