MATHEMATICS ENRICHMENT CLUB. Problem Sheet 2, May 5, 2015^{1}

1. Solve

$$
\frac{y+x}{\sqrt{y}+1}=x
$$

2. Let x, y and z be integers. Show that if $x-y+2 z$ is divisible by 11 , then so is $-12 x+y-13 z$.
3. Anna and Boris move simultaneously towards each other, from points A and B respectively. Their speeds are constant, but not necessarily equal. Had Anna started 30 minutes earlier, they would have met 2 kilometers nearer to B. Had Boris started 30 minutes earlier instead, they would have met d kilometers nearer to A. Find d.
4. A triangle $A P Q$ is drawn inside a square, such that the points P, Q are on the sides $B C$ and $D C$ of the square $A B D C$, with the length of $P C$ and $Q C$ equal. Draw a line from P parallel to $A C$, to intersect the diagonal $D B$ at the point X as shown below.

(a) Show that the triangle $P X B$ is isosceles.
(b) Show that the perimeter of $A P Q$ can not be more than the perimeter of $A B D$.
5. A four digit number and its square ends in the same four digits. Find the number.

[^0]6. A 3×3 magic square is a grid filled with the numbers 1 to 9 so that the sum of rows, column and diagonal are all equal. E.g

6	1	8
7	5	3
2	9	4

Counting different orientations of the grid as the same magic square, prove that the above example is the only solution.

Senior Questions

The First two problems are based on polynomials: A polynomial of degree k is a function of the form $P_{k}(x)=a_{0}+a_{1} x^{1}+a_{2} x^{2}+\ldots+a_{k} x^{k}$, where $a_{0}, a_{1}, a_{2}, \ldots, a_{k}$ are real numbers. For example $P_{2}(x)=5 x^{2}+3 x+1$ is a polynomial of degree 2 , with $a_{0}=1, a_{1}=3$ and $a_{2}=5$. Also $P_{2}\left(x^{2}\right)=5\left(x^{2}\right)^{2}+3 x^{2}+1$ is a polynomial of degree 4 .

1. Let $P_{3}(x), Q_{2}(x)$ and $R_{3}(x)$ be polynomials of x, show that
(a) $P_{3}(x) \times Q_{2}(x)+R_{3}\left(x^{2}\right)$ is a polynomial of degree 6 .
(b) $P_{2}\left(Q_{3}(\sqrt{x})\right)$ is a polynomial of degree 3 .
2. Let $f(x)=\exp \left(\frac{1}{x}\right)$, and let $f^{(k)}(x)$ denote the $k^{t h}$ derivative of f with respect to x. For $k \geq 2$, use induction to show that

$$
f^{(k)}(x)=P_{2 k}\left(\frac{1}{x}\right) \exp \left(\frac{1}{x}\right) .
$$

3. ${ }^{2}$ Use induction to show that

$$
\sqrt{1}+\sqrt{2}+\ldots+\sqrt{n} \geq \frac{2}{3} n \sqrt{n}
$$

[^1]
[^0]: ${ }^{1}$ Some problems from UNSW's publication Parabola, and the Tournament of Towns in Toronto

[^1]: ${ }^{2}$ This problem provided by Adam Solomon.

