MATHEMATICS ENRICHMENT CLUB. Solution Sheet 2, May 5, $2015{ }^{\text {¹ }}$

1.

$$
\begin{aligned}
\frac{y+x}{\sqrt{y}+1} & =x \\
y+x & =(\sqrt{y}+1) x \\
y & =(\sqrt{y}) x \\
\sqrt{y} & =x
\end{aligned}
$$

2. If $x-y+2 z$ is divisible by 11 , then there is an integer k such that $x-y+2 z=11 k$. So we can write

$$
\begin{aligned}
-12 x+y-13 z & =-x+y-2 z-11 x-11 z \\
& =-11 k-11(x+z) \\
& =-11(k+x+z)
\end{aligned}
$$

The right hand side of the above equation is divisible by 11 , because $k+x+z$ is an integer; $-12 x+y-13 z$ is divisible by 11 .
3. The speed of Anna and Boris, and the initial distance between them are constant regardless of when they started moving toward each other. Therefore, we would like to express everything we need to solve this problem in terms of those constants. Let V_{A} and V_{B} be the speed of Anna and Boris respectively, and let x be the initial distance between them. If they move towards each other simultaneously, then the time it takes for Anna and Boris to meet is

$$
\frac{x}{V_{A}+V_{B}}
$$

Which means the distance covered by Anna is $\frac{x V_{A}}{V_{A}+V_{B}}$, and the distance covered by Boris is $\frac{x V_{B}}{V_{A}+V_{B}}$.
Suppose they started moving at a different time, so that the distance covered by Anna is 2 km more and the distance covered by Boris is 2 km less. Then the time Anne

[^0]spend moving is $\frac{1}{V_{A}}\left(\frac{x V_{A}}{V_{A}+V_{B}}+2\right)$. Similar Boris spend $\frac{1}{V_{B}}\left(\frac{x V_{A}}{V_{A}+V_{B}}-2\right)$ moving. But we already know the difference in timing is $\frac{1}{2}$ hour, therefore
$$
\frac{1}{V_{A}}\left(\frac{x V_{A}}{V_{A}+V_{B}}+2\right)-\frac{1}{V_{B}}\left(\frac{x V_{B}}{V_{A}+V_{B}}-2\right)=\frac{1}{2}
$$
or simplifying to get $\frac{1}{V_{A}}+\frac{1}{V_{B}}=\frac{1}{4}$. This expression is symmetric, so if we switch the starting time condition between Anna and Boris, then Anna would cover 2 km less and Boris 2km more; $d=2$.
4. Using the notation $|\cdot|$ to mean the perimeter of a triangle or length of a line. Let the point of intersection between the diagonals $D B$ and $A C$ be O.

(a) Since $A B D C$ is a square, the diagonal $B D$ bisects $\angle A B C$ so that $\angle X B P=45^{\circ}$, also the diagonals $B D$ and $A C$ intersections at right angles so that $\angle B O C=90^{\circ}$. Furthermore, $\angle C O B=\angle P X B$ because $X P$ and $C O$ are parallel. So we have $\angle P X B=\angle B O C=90^{\circ}$, which implies $\angle B P X=180^{\circ}-90^{\circ}-45^{\circ}=45^{\circ}=$ $\angle X B P$; the triangle $P X B$ is isosceles with $|X B|=|X P|$.
(b) Let $|A B|=a$ and $|O B|=b$, then the perimeter of ABD is $2 a+2 b$, so we want to show that the perimeter of $|A P Q| \leq 2 a+2 b$. Draw a line to connect the points A and X, and let the intersection of $P Q$ and $A C$ be N.
We are given that $|P C|=|Q C|$, from this we can work out that the triangles $A P N$ and $A Q N$ are similar. This implies that N is the midpoint of $P Q$ and $|A P|=|A Q|$. Hence, $|A P Q|=2|N P|+2|A P|$. Furthermore, $O X P N$ is a parallelogram, thus $|N P|=|O X|$ which implies
\[

$$
\begin{aligned}
|A P Q| & =2|N P|+2|A P| \\
& =2|O X|+2|A P| \\
& =2 b-2|X B|+2|A P| .
\end{aligned}
$$
\]

Next we work with the side $A P$ to get an upper bound for it. To do this, consider the triangle $A X P$. The sum of two sides of any triangle is greater than the other side (you may want to think about why this is always true), so $|A P| \leq$ $|X P|+|A X|=|X B|+|A X|$, where the second equality on this expression is
due to $P X B$ being is isosceles. Also, $|A X| \leq|A B|=a$ because the side $A B$ is opposite to the largest angle in the triangle $A B X$, from all of this we conclude:

$$
\begin{aligned}
|A P Q| & =2 b-2|X B|+2|A P| \\
& \leq 2 b-2|X B|+2|X B|+2|A X| \\
& \leq 2 b+2 a
\end{aligned}
$$

5. Let x be the four digit number we are trying to find. Then $x^{2}-x=x(x-1)$ is a number ending in 0000 ; that is $x(x-1)$ is divisible by $10000=2^{4} 5^{4}$. One of $x-1$ or x is divisible by 2^{4} and the other by 5^{4}. If x or $x-1$ is divisible by 5^{4}, then it is an odd multiple of $5^{4}=625$, so x or $x-1$ must be one of
$625,1875,3125,4375,5625,6875,8125,9375$.
We add or subtract 1 from the above list to find out which of the other number is divisible by 16. The two possibilities are $x-1=624$ and $x=9376$, we discard the first solution because it is not a proper four digit number.
6. Begin by assigning letters to each of the cells in the 3×3 grid.

a	b	c
d	e	f
g	h	i

Although we do not know the individual value of each letter we do know that each of the digits 1 through 9 is assigned to the letters in some order. Let T be the total by adding each row, column or diagonal, e.g $T=a+b+c$. Then by adding all three rows, we get the number $3 T$. Note this is the same as adding every cell.

$$
a+b+c+d+e+f+g+h+i=1+2+\ldots+9=45=3 T,
$$

so $T=15$. Suppose instead we add every row, column or diagonal that involves the middle cell, then

$$
\begin{aligned}
(a+e+i)+(d+e+f)+(g+e+c)+(b+e+h) & =4 T \\
(a+b+c+d+e+f+g+h+i)+3 e 45+3 e & =60 \\
45+3 e & =60 \\
e & =5 .
\end{aligned}
$$

Hence we know that $T=15$ and the middle cell must be 5 . So in order for each line to have the same total of 15 it will be necessary for the cells either side of the central cell to be of the form $5 x$ and $5+x$.

$5+x$	$5-x-y$	$5+y$
$5-x+y$	5	$5+x-y$
$5-y$	$5+x+y$	$5-x$

The cell with greatest value is $5+x+y=9$, hence $x+y=4$. Also $x \neq y$, otherwise the cells $5+y$ and $5+x$ would have the same number in them; Finally $x, y>0$ to avoid the cells $x+5$ and $x-5$ being the same.

Because $x \neq y$, we can assume without loss that $x<y$, and since $x+y=4$, we conclude that $x=1$ and $y=3$. Substituting these values into the grid above we obtain the solution given in the problem and hence prove that this solution is unique.

Senior Questions

There was a few typos in the first two equations...

1. Write

$$
\begin{aligned}
& P_{3}(x)=a_{0}+a_{1} x^{1}+a_{2} x^{2}+a_{3} x^{3} \\
& Q_{2}(x)=b_{0}+b_{1} x^{1}+b_{2} x^{2} \\
& R_{3}(x)=c_{0}+c_{1} x^{1}+c_{2} x^{2}+c_{3} x^{3} .
\end{aligned}
$$

(a) $P_{3}(x) \times Q_{2}(x)=a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x^{1}+\ldots+\left(a_{3} b_{2}\right) x^{5}$, so

$$
P_{3}(x) \times Q_{2}(x)+R_{3}(x)=\left(a_{0} b_{0}+c_{0}\right)+\left(a_{0} b_{1}+a_{1} b_{0}\right) x^{1}+\ldots+\left(a_{3} b_{2}\right) x^{5}+c_{3} x^{6},
$$

which is a polynomial of degree 6 .
(b) The question should be $P_{3}\left(Q_{2}(\sqrt{x})\right)$, then

$$
\begin{aligned}
P_{3}\left(Q_{2}(\sqrt{x})\right) & =P_{3}\left(b_{0}+b_{1} \sqrt{x}+b_{2} x\right) \\
& =a_{0}+a_{1}\left(b_{0}+b_{1} \sqrt{x}+b_{2} x\right)^{1}+\ldots+a_{3}\left(b_{0}+b_{1} \sqrt{x}+b_{2} x\right)^{3}
\end{aligned}
$$

which has degree 3.
2. The equality should be

$$
f^{(k)}(x)=P_{2 k}\left(\frac{1}{x}\right) \exp \left(\frac{1}{x}\right),
$$

which holds for all $k \geq 1$. Note that by definition, $P_{k}(x)$ means a polynomial of x of degree k, what the real numbers $a_{0}, \ldots a_{k}$ are is unimportant for this equation. For $k=1$,

$$
\begin{aligned}
f^{(1)}(x) & =\frac{d}{d x} \exp \left(\frac{1}{x}\right) \\
& =-\frac{1}{x^{2}} \exp \left(\frac{1}{x}\right)=P_{2}\left(\frac{1}{x}\right) \exp \left(\frac{1}{x}\right) .
\end{aligned}
$$

Assuming the expression holds for k, then we want to show that

$$
f^{(k+1)}(x)=P_{2(k+1)}\left(\frac{1}{x}\right) \exp \left(\frac{1}{x}\right) .
$$

Using the product rule to differentiate $f^{(k)}(x)$, and note that if we differentiate a polynomial of x with respect to x we end up with another polynomial of x of one less degree, thus

$$
\begin{aligned}
f^{(k+1)}(x) & =\exp \left(\frac{1}{x}\right) \frac{d}{d x} P_{2 k}\left(\frac{1}{x}\right)+P_{2 k}\left(\frac{1}{x}\right) \frac{d}{d x} \exp \left(\frac{1}{x}\right) \\
& =\exp \left(\frac{1}{x}\right) P_{2 k-1}\left(\frac{1}{x}\right)-\frac{1}{x^{2}} P_{2 k}\left(\frac{1}{x}\right) \exp \left(\frac{1}{x}\right) \\
& =\exp \left(\frac{1}{x}\right) P_{2 k-1}\left(\frac{1}{x}\right)+P_{2 k+2}\left(\frac{1}{x}\right) \exp \left(\frac{1}{x}\right) \\
& =P_{2 k+2}\left(\frac{1}{x}\right) \exp \left(\frac{1}{x}\right)
\end{aligned}
$$

3. The inequality clearly holds for the case $n=1$, so we assume $\sqrt{1}+\sqrt{2}+\ldots+\sqrt{n} \geq$ $\frac{2}{3} n \sqrt{n}$ to prove the inequality holds for $n+1$; i.e

$$
\sqrt{1}+\sqrt{2}+\ldots+\sqrt{n}+\sqrt{n+1} \geq \frac{2}{3}(n+1) \sqrt{n+1}
$$

Consider the right hand side of the above equation

$$
\begin{aligned}
\frac{2}{3}(n+1) \sqrt{n+1} & =\frac{2}{3} n \sqrt{n+1}-\frac{1}{3} \sqrt{n+1}+\sqrt{n+1} \\
& =\frac{2}{3}\left(n-\frac{1}{2}\right) \sqrt{n+1}+\sqrt{n+1}
\end{aligned}
$$

By taking the square on the expression $\left(n-\frac{1}{2}\right) \sqrt{n+1}$, then

$$
\begin{aligned}
\left(n-\frac{1}{2}\right)^{2}(n+1) & =\left(n^{2}-n+1 / 4\right)(n+1) \\
& =n^{3}-\frac{3}{4} n+\frac{1}{4} \\
& \leq n^{3}
\end{aligned}
$$

for $n \geq 1$, hence $\left(n-\frac{1}{2}\right) \sqrt{n+1} \leq n \sqrt{n}$. From this we conclude

$$
\begin{aligned}
\frac{2}{3}(n+1) \sqrt{n+1} & =\frac{2}{3}\left(n-\frac{1}{2}\right) \sqrt{n+1}+\sqrt{n+1} \\
& \leq \frac{2}{3} n \sqrt{n}+\sqrt{n+1} \\
& \leq \sqrt{1}+\sqrt{2}+\ldots+\sqrt{n}+\sqrt{n+1}
\end{aligned}
$$

[^0]: ${ }^{1}$ Some problems from UNSW's publication Parabola, and the Tournament of Towns in Toronto

